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Abstract

This project evaluates the suitability of several declustering algorithms for induced seismicity and
their impacts on hazard analysis in Oklahoma and Kansas. We consider algorithms proposed by
Gardner and Knopoff (1974), Reasenberg (1985), Zaliapin and Ben-Zion (2013) and the stochastic
declustering method (Zhuang et al., 2002) based on the epidemic type aftershock sequence (ETAS)
model (Ogata, 1988, 1998). Results show that the choice of declustering algorithm has a significant
impact on the declustered catalog as well as the resulting hazard analysis in Oklahoma and Kansas.
The Gardner and Knopoff algorithm, which is currently implemented in the U.S. Geological Survey
one-year seismic hazard forecast for the central and eastern U.S., has unexpected features when used
for this induced seismicity catalog. It removes 80% of earthquakes and fails to reflect the changes
in background rates that have occurred in the past few years. This results in a slight increase in the
hazard level from 2016 to 2017, despite a decrease in seismic activities in 2017. The Gardner and
Knopoff algorithm also frequently identifies aftershocks with much stronger shaking intensities than
their associated mainshocks. These features are mostly due to the window method implemented in
the Gardner and Knopoff algorithm. Compared to the Gardner and Knopoff algorithm, the other
three methods are able to capture the changing hazard level in the region. However, the ETAS
model potentially overestimates the foreshock effect and generates negligible probabilities of large
earthquakes being mainshocks. The Reasenberg and Zaliapin and Ben-Zion methods have similar
performance on catalog declustering and hazard analysis. Compared to the ETAS method, these
two methods are easier to implement and faster to generate the declustered catalog. Results from
this study suggest that both Reasenberg and Zaliapin and Ben-Zion declustering algorithms are
suitable for declustering and hazard analysis for induced seismicity in Oklahoma and Kansas.

Introduction

The declustered earthquake catalog is often used as input for probabilistic hazard analysis models.
Declustering removes dependent earthquakes (i.e., foreshocks and aftershocks) so that the retained
earthquakes follow a Poisson distribution, which allows a stable estimation of background rates
from short catalogs. However, the identification of independent and dependent earthquakes is not
absolute, and there are various declustering algorithms developed based on different assumptions
and recorded data. As a result, a single algorithm may not be suitable for all seismic regions.
For example, the U.S. Geological Survey (USGS) one-year seismic hazard forecast model used the
Gardner and Knopoff declustering algorithm and developed one-year seismic hazard forecasts that
accounted for both induced and natural earthquakes in the central and eastern U.S. from 2015 to
2018 (Petersen et al., 2015, 2016, 2017, 2018). The model assumed that the hazard level could be
predicted from the declustered earthquake catalog in the previous year. The 2018 forecast showed
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an increase in seismic hazard for the Oklahoma and Kansas region despite the reduced number
of earthquakes in the prior year (Petersen et al., 2018). We will see that this unexpected hazard
increase is largely due to the use of the Gardner and Knopoff declustering algorithm.

In this study, we studied four of the most popular declustering algorithms, the Gardner and
Knopoff (1974), Reasenberg (1985), Zaliapin and Ben-Zion (2013), and the stochastic declustering
method (Zhuang et al., 2002) based on the epidemic type aftershock sequence (ETAS) model (Ogata,
1988, 1998), for seismic hazard analysis in Oklahoma and Kansas. Gardner and Knopoff (1974) in-
troduced a window method that grouped earthquakes according to the space-time distances among
them. For every cluster, the event with the maximum magnitude was indicated as the mainshock,
and events within the space-time window of the mainshock were removed. The Gardner and Knopoff
algorithm is the simplest and most commonly used algorithm, though it does not identify the higher
order aftershocks, which are aftershocks generated by aftershocks (van Stiphout et al., 2012). An-
other example of window methods is Wooddell and Abrahamson (2014). The second algorithm was
a link method developed by Reasenberg (1985) that connected earthquakes according to the spatial
and temporal distances among them. Specifically, Reasenberg (1985) developed an interaction zone,
specified by space-time distances, centered at each event. Any event within the interaction zone
of the previous event was identified as an aftershock. The space and time extent of the interac-
tion zone was defined according to Omori’s law and stress redistribution around each earthquake.
The cluster was grown by rules of association, and the largest event in the cluster was considered
as the mainshock. Other link methods are Frohlich and Davis (1990); Davis and Frohlich (1991).
The third method was developed by Zaliapin and Ben-Zion (2013) based on the nearest-neighbor
distances of events in space-time-energy domain. The distance between every pair of events was a
function of the time difference, spatial separation and magnitude. The nearest-neighbor distances
followed a bimodal distribution, where the mode with larger distances corresponded to background
events. The last method is the probability-based declustering method (Zhuang et al., 2002) based
on the ETAS model (hereafter the ETAS method). The ETAS model was first introduced by Ogata
(1988, 1998). It was a stochastic model that uses probabilistic methods to estimate the background
seismic rate, which was assumed to be stationary. It did not identify aftershocks, mainshocks, and
foreshocks explicitly. Instead, the output of the ETAS model was the probability of an event be-
ing a background event, i.e., a mainshock. It considered the probability distributions of the time
and location of an offspring event based on Omori’s law and other previous studies (Kagan and
Knopoff, 1978, 1980). More recent studies also introduced nonstationary ETAS models (Marzocchi
and Lombardi, 2008; Kumazawa et al., 2014; Kattamanchi et al., 2017).

This project evaluates the suitability of these four seismic declustering algorithms for induced
earthquakes in the Oklahoma and Kansas region. We analyze their effects on declustered catalogs
and hazard analyses in three steps: 1) checking how often declustering algorithms take out events
that produce stronger shaking than retained events, 2) comparing results from the four algorithms
when implemented on an induced catalogs (Oklahoma-Kansas), on natural catalogs (California),
and on simulated catalogs where the earthquake occurrence follows the Poisson distribution, 3) con-
ducting one-year hazard analyses for Oklahoma City and evaluating the effect of different algorithms
on the ground motion hazard results.

Data and processing

We considered two regions of approximately 1.5× 105km2 area in the Oklahoma and Kansas region
(Figure 1a) and in California (Figure 1b) and obtained earthquake catalogs of the regions from
the USGS earthquake catalog website. For the Oklahoma and Kansas region, the magnitude of
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completeness (Mc) is 2.5 according to the Goodness of Fit test at 90% level (Wiemer and Wyss,
2000) and past studies in this area (Darold et al., 2015; Vasylkivska and Huerta, 2017). For the
selected region in California, Mc is less than 2.0 (Wiemer and Wyss, 2000). We then collected
all earthquakes occurring between 2014 and 2018 and with magnitudes greater than 2.7. There
were 5,167 and 639 events in the Oklahoma-Kansas and California regions, respectively. We also
collected ground motion time series from Incorporated Research Institutions for Seismology (IRIS)
Data Services for the same regions and period.

Both catalogs were then declustered using the four algorithms. For the Gardner and Knopoff
(1974) algorithm, the spatial and time window lengths are defined as

log10 T =


0.032M + 2.7389 if M ≥ 6.5

0.5409M − 0.547 otherwise
(1)

log10 L = 0.1238M + 0.983 (2)

where T (days) and L(km) are the window lengths in time and space, and M is the magnitude of
an earthquake. For the Reasenberg algorithm, we used the default values in Reasenberg (1985) for
all the parameters, such as the interaction radius for dependent events (10 km) and the minimum
looking ahead time for not clustered events (1day). However, we adjusted the minimum magnitude
of completion to 2.7 based on the selected catalog. For the Zaliapin and Ben-Zion method, the
distance between earthquake i and j was defined as

ηij =


tij(rij)

d10−bmi if tij > 0

∞ otherwise
(3)

where tij(years) is the event intercurrence time, which is positive if event i occurs before event
j; rij(km) is the spatial distance between two events; d is the dimension of hypocenters or epicen-
ters, which is 1.3 according to Zaliapin and Ben-Zion (2016); b describes the Gutenberg-Richter
distribution. The catalog was declustered using the Gaussian mixture model approach on the
nearest-neighbor distances. For the ETAS method, we used SEDA, a Matlab package developed
by Lombardi (2017), to conduct the Time-Magnitude-Space ETAS modeling developed by Ogata
(1988, 1998). This model estimates eight parameters, including the background rate and parameters
of Omori’s law, using the maximum likelihood method. The output of this model is the probability
of each event in the catalog being a background event and its corresponding background rate. We
declustered the catalog using a stochastic algorithm (Algorithm 2 in Zhuang et al. (2002)) based
on the output probability. The results presented in this paper are mean values generated from 50
stochastically declustered catalogs. The ETAS model divides the catalog into a precursory and a
target period. It is applied to the target period for parameter estimation and considers the triggering
effect of the precursory earthquakes on the target period. Since the ETAS model by Ogata (1988,
1998) assumes that the background rate is independent of time, to capture the changing seismic
activity, we divided the Oklahoma-Kansas catalog into four one-year target periods starting from
01/01/2014. Their corresponding precursory periods are the half-years before the target period,
which starts from 07/01/2013. We considered the California catalog as a single target period, with
its precursory period defined as the time from 07/01/2013 to 12/31/2013.

We plotted the Oklahoma-Kansas catalogs before and after declustering to illustrate the declus-
tering process. Figure 2 shows the spatial distribution of earthquakes with magnitudes above 2.7
in the Oklahoma and Kansas region in 2016 and 2017. Most events were in central and northern
Oklahoma. In 2016, there were 1,338 earthquakes with magnitudes above 2.7, and the number
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(a) (b)

(c) (d)

Figure 1: Selected regions (marked in red) with similar sizes in (a) Oklahoma and Kansas and (b)
California. The number of earthquakes is plotted in blue. The number of earthquakes per month
in (c) Oklahoma and Kansas and (d) California.

decreased to 618 in 2017 due to the reduction in wastewater injection activity in much of the region
(Petersen et al., 2018). Figure 3 shows the fraction of earthquakes removed by the four declustering
algorithms for the two years. In both years, the Gardner and Knopoff method removed more earth-
quakes (87% and 67%) compared to the Reasenberg (33% and 18%) and Zaliapin and Ben-Zion
methods (39% and 32%). All algorithms removed a smaller fraction of earthquakes in 2017 because
the earthquakes were fewer and more spatially dispersed.

Determination of dependent events with stronger ground motions

The typical assumption in hazard analysis is that the declustering process removes dependent events
that produce less intense shaking than those retained, so it does not affect the hazard results signif-
icantly (Cornell, 1968), though we note that some studies have considered dependent events in the
hazard analysis (Boyd, 2012; Marzocchi and Taroni, 2014; Chioccarelli et al., 2018). In this section,
we tested the validity of the assumption about declustering when using the selected declustering
algorithms in the Oklahoma and Kansas region. In particular, we compared shaking intensities, mea-
sured by spectral accelerations of horizontal components at a period of 0.1s (Sa(0.1s)), of ground
motions of mainshocks and dependent events. The dependent events were defined to be stronger
than their mainshock if there was at least one station with Sadependent event/Samainshock > 1.0.
Samainshock and Sadependent event are the recorded Sa(0.1s) of the mainshock and dependent event
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(a) (b)

Figure 2: The number of earthquakes with magnitudes above 2.7 in the Oklahoma and Kansas
region in (a) 2016 and (b) 2017.

ground motions, respectively. Note that this metric is not intended to define the earthquake itself
as stronger, but merely the resulting ground motion at a given station; the motivation for this
metric is that if such events and ground motions are removed from the historic catalog, the future
catalogs considered by the probabilistic seismic hazard analysis (PSHA) calculations will be missing
events with the potential to cause ground shaking of interest. Figure 4 illustrates two examples of
response spectra of a mainshock ground motion and its dependent events’ ground motions defined
by the Gardner and Knopoff algorithm. In Figure 4a, the mainshock ground motion has a higher
shaking intensity than its dependent events, with a maximum Sadependent event/Samainshock of 0.11.
In Figure 4b, the aftershock ground motion is more damaging than the mainshock ground motion,
with Sadependent event/Samainshock = 29.3. We declustered the 2014-2018 Oklahoma-Kansas catalog
and computed the number of mainshocks having at least one Sadependent event/Samainshock larger
than a given ratio. We did not evaluate the ETAS method because it does not match aftershocks
and foreshocks to specific mainshocks.

Figure 5 illustrates the cumulative fraction of mainshocks with maximum Sadependent event/Samainshock

less than values of interest. Clusters without available recorded ground motions were excluded in
the calculation. For the Gardner and Knopoff algorithm, approximately 84% of mainshocks had
dependent events with higher shaking intensities, and 39% had Sadependent event/Samainshock > 4 (a
somewhat arbitrary threshold chosen for illustration), which indicates that it removed some events
that are much stronger than the ones retained. The Reasenberg and Zaliapin and Ben-Zion meth-
ods have similar performances. Both identified stronger events as aftershocks or foreshocks, but
the Sa(0.1s) ratios were smaller compared to values from the Gardner and Knopoff method, with
only around 10% of the mainshocks having Sadependent event/Samainshock > 4. At all thresholds,
the Gardner and Knopoff method had the highest fraction of stronger events (Figure 5). These
results illustrate that compared to Reasenberg and Zaliapin and Ben-Zion methods, the Gardner
and Knopoff algorithm potentially identifies more dependent events that have stronger shakings
than mainshocks. To check the robustness of the results, we repeated the analysis by considering
two additional criteria: 1) selecting ground motions with site-event distance < 40km, 2) selecting
ground motions with least 3 stations having Sadependent event/Samainshock > 1. The results for all
algorithms were similar to the values in Figure 5.

Large Sadependent event/Samainshock values indicate the removal of earthquakes far apart but close
in magnitude, which suggests that the algorithms remove events causing ground motions that could
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Fraction of earthquakes removed by the Gardner and Knopoff algorithm in (a) 2016 and
(b) 2017, the Reasenberg algorithm in (c) 2016 and (d) 2017, the Zaliapin and Ben-Zion algorithm
in (e) 2016 and (f) 2017 and the ETAS method in (g) 2016 and (h) 2017.
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(g) (h)

Figure 3: continued

potentially contribute to hazard analysis. The exclusion of many such events distorts the spatial
distribution of large events and results in an underestimation of hazard level. The dependent
events with large Sadependent event/Samainshock values are due to the large spatial window of the
Gardner and Knopoff algorithm. A station experiences a stronger shaking from an aftershock than
its mainshock when the events are close in magnitude but far apart from each other, with the
aftershock closer to the station. For example, Figure 6 is a map of earthquakes from the Figure
4b cluster, in which the aftershock identified by the Gardner and Knopoff algorithm has much
stronger shaking than its mainshock. The aftershock is much closer to the station compared to the
mainshock. The small difference in magnitudes (the M3.3 mainshock and the M3.0 aftershock) but
large separation distance (20.2km) between the aftershock and its mainshock resulted in the large
Sadependent event/Samainshock value. The large ratio generated by the Gardner and Knopoff method
suggests that it potentially groups earthquakes that are far apart but similar in magnitude into one
cluster. As a result, this algorithm identifies aftershocks that can be as strong as mainshocks and
removes them from the catalog. More earthquakes are declustered by the Gardner and Knopoff
algorithm, and this can result in an underestimation of hazard. This large spatial window (24.6km
for a M3.3 earthquake) was developed based on earthquakes in California and is usually not an
issue for natural seismicity as there are seldom two earthquakes, with magnitudes above 3.0 and
separated by 20km, happening within a week. However, this spatial window is not suitable for
induced seismicity in Oklahoma due to the high occurrence rate and close time-space separation
distances among events. Overall, compared to the Reasenberg and Zaliapin and Ben-Zion methods,
the Gardner and Knopoff algorithm removes more events that have much stronger shaking than their
mainshocks. Preferred approaches to minimize the removal of stronger dependent events are using
the Reasenberg and Zaliapin and Ben-Zion algorithms, or developing region-appropriate parameters
for the Gardner and Knopoff algorithm.

Declustered catalogs in Oklahoma-Kansas and California regions

We next compared the selected algorithms’ performances for the California and Oklahoma-Kansas
catalogs defined in the Data and Processing section. After declustering the catalogs, we first tested
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(a) (b)

Figure 4: Response spectra of two sample clusters where (a) the mainshock has stronger shaking
than its dependent events; (b) the dependent event has stronger shaking than the mainshock.

Figure 5: Fraction of mainshocks with maximum Sadependent event/Samainshock less than a given
ratio.

the temporally homogeneous Poisson hypothesis of the declustered catalogs using the conditional
chi-square test and the Kolmogorov–Smirnov test at a significance level of 0.1 (Luen and Stark,
2012). The non-Poissonian sequences of the induced seismic catalogs are due to the presence of
dependent earthquakes and the temporally in-homogeneous base rate caused by human activity. An
effective declustering catalog should remove dependent earthquakes while capturing the temporally
in-homogeneous rate. For four-year declustered catalogs, only the catalog from the Gardner and
Knopoff method did not reject the null hypothesis. The Gardner and Knopoff method removed
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Figure 6: Maps of a cluster where the aftershock is stronger than its mainshock. The response
spectra of the mainshock and the selected aftershock are shown in Figure 4b.

many earthquakes and produced a catalog with a constant rate in time (Figure 1c). This suggests
that this method removes both dependent earthquake sequences and the changing base rate. The
other three declustered catalogs were nearly Poissonian over four-month time intervals. For the
Reasenberg and Zaliapin and Ben-Zion algorithms, the null hypothesis was not rejected for more
than 70% of the four-month declustered catalogs. For the ETAS model, more than 90% of the
four-month declustered catalogs were not rejected. The results suggest that these three methods
are able to remove dependent events and generate Poissonian catalogs for a short time interval
in which the base rate is almost constant. They also preserve the non-stationary base rate when
considering a longer time interval (Figure 1c). For induced seismicity, we often conduct the hazard
analysis for a short time interval (no longer than a one-year period), we thus conclude that the
Reasenberg, Zaliapin and Ben-Zion and ETAS methods are suitable even though their declustered
4-year catalogs were not consistent with the null hypothesis.

We then studied the magnitude distribution of the declustered catalog by fitting it with a
truncated Gutenberg-Richter distribution (Cornell and Vanmarcke, 1969).

log10N(M ≥ m) = a− b(m−mmin) (4)

where m is the magnitude of interest, mmin = 2.7 is the predefined minimum magnitude, a is
the total number of earthquakes with m ≥ mmin, and b describes the decrease in the number of
earthquakes as magnitudes increase. The b was estimated using the maximum likelihood method
proposed by Utsu (1965):

b̂ =
nlog10e

n
i=1

(mi −mmin +mbin/2)

(5)
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where mi is the magnitude of event i, n is the number of events in the declustered catalog and mbin

is the binning width of the catalog.
The results are summarized in Figure 7. All b̂ for the California catalog are close to 1.0, which

suggests that the selected methods have similar performances on natural seismicity. However, in
Oklahoma and Kansas, the b̂ from different declustering algorithms vary significantly. The Gardner
and Knopoff method removed more small earthquakes (M < 3.5) compared to others, producing the
smallest fitted b̂ = 0.79. This resulted in lower predicted occurrence rates for small events but higher
rates for large events. The values computed from the Reasenberg and the Zaliapin and Ben-Zion
algorithms are close to each other as well as the one obtained from the undeclustered catalog. The
ETAS method resulted in the largest b̂ as it produced very small probabilities of large earthquakes
(e.g., M > 4.5) being mainshocks, which resulted in low occurrence rates for those earthquakes as
well as an underestimation in the hazard level. This was also observed by Console et al. (2010), in
which they suggested that the ETAS model tends to overestimate the foreshock effect. Moreover,
for the Oklahoma and Kansas catalog (Figure 7a), the fit of the Gutenberg-Richter distribution
is not perfect for magnitudes greater than 4. This can be addressed by using a larger assumed
magnitude of completeness. We repeated the analysis using Mc = 3.5 and observed that the effect
of declustering algorithms on b̂ was still significant, with The ETAS model having b̂ of 2.22 and the
Gardner and Knopoff method having the smallest b̂ of 1.24.

We also compared the reduction in the number of earthquakes after declustering by the selected
methods. Figure 1c and 1d illustrate the number of mainshocks per month from 2014 to 2018 in
the two regions. All declustering algorithms worked well in California as they took out the sporadic
aftershock sequences and resulted in relatively constant background rates. In Oklahoma and Kansas,
the Gardner and Knopoff algorithm removed a large number of earthquakes and failed to capture
the changing background seismic rate. This resulted in relatively uniform rates throughout the
four years, which was inconsistent with the changing seismic activity in the region. The ETAS
method reflected the changing seismicity, but the change is minor compared to the full catalog.
This is because the ETAS model assumes that the background intensity at a given location remains
constant for the time range considered (i.e., one year in this study). This can be improved by
considering nonstationary ETAS models (Marzocchi and Lombardi, 2008; Kumazawa et al., 2014;
Kattamanchi et al., 2017). Both the Reasenberg and Zaliapin and Ben-Zion algorithms preserved
the changing seismic rate while removing aftershock sequences. The results address the importance
of selecting a suitable declustering algorithm for induced earthquakes in the Oklahoma and Kansas
region.

Declustering for a simulated Poisson catalog

In addition to testing the declustering algorithms on recorded earthquake catalogs, we explored
how they behaved on Monte-Carlo-simulated catalogs where the earthquake occurrence follows a
Poisson distribution (i.e., with no foreshocks, aftershocks or clusters). Since declustering is designed
to remove dependent (i.e., non-Poissonian) earthquakes, an effective declustering algorithm should
remove a negligible number of earthquakes in the simulated catalogs.

We defined a 200km×200km region and generated 5,000 earthquakes within the region. We made
three assumptions: 1) the earthquake occurrence was a stationary Poisson process with a predefined
mean of λ (count/year/km2). The catalog length was set such that it enveloped 5,000 earthquakes
and had a coefficient of variation of 0.0141. 2) the earthquake location was uniformly distributed in
the 200km× 200km region, 3) the earthquake magnitude followed a truncated Gutenberg–Richter
distribution between 2.7 and 7.0, with b = 1.0. Figure 8 visualizes 4 years (out of 69 years) of
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(a) (b)

Figure 7: The number of earthquakes with magnitudes greater than values of interest in (a)
Oklahoma and Kansas and (b) California. The dots are data from the declustered catalog, and the
line describes the truncated Gutenberg-Richter distribution using the fitted b (Equation 5).

one simulated earthquake catalog with λ = 1.825 × 10−3(count/year/km2). Figure 8a shows the
locations of simulated earthquakes and Figure 8b illustrates the earthquake occurrence versus time.
We then used the four algorithms to decluster the simulated catalogs. To avoid any inaccuracy
caused by clusters near the boundary, we computed the removal ratio as the ratio between the
number of events removed and the total number of simulated events in the 100km× 100km region
at the center (the shaded area in Figure 8a).

Figure 9 summarizes the removal ratios plotted versus λ for simulated catalogs with a range
of λ, for each of the selected declustering algorithms. The removal ratios from the California and
Oklahoma-Kansas catalogs are also plotted for reference. In Figure 9, the Gardner and Knopoff
curve shows an unexpected feature — the removal ratio increases with λ. It reaches above 0.5
when λ > 5 × 10−3count/year/km2. Moreover, the Gardner and Knopoff curve is slightly below
the ratios computed from the declustered California and Oklahoma-Kansas catalogs, suggesting
that the Gardner and Knopoff method removed independent earthquakes while declustering the
recorded catalogs. This unexpected behavior is due to the large time and space windows imple-
mented in the Gardner and Knopoff algorithm. The removal ratio from the Zaliapin and Ben-Zion
method stays around 32% for different λ. This is because, for a Poisson process, the distribution
of nearest-neighbor distances with different λ is unimodal and can be approximated by the Weibull
distribution (Zaliapin and Ben-Zion, 2013). As a result, the non-zero removal ratio is caused by
the implementation of the Gaussian mixture model in this method. Removal ratios computed using
the Reasenberg and ETAS methods remain at almost zero for all λ, which is the desired behavior
and is mostly due to the implementation of Omori’s law in both methods. Omori’s law states that
the frequency of aftershocks decays with the time after the mainshock and is proportional to the
reciprocal of the time difference. This prevents declustering Poissonian earthquake catalogs with
large λ. Overall, an effective declustering algorithm should remove dependent earthquakes only and
thus a negligible number of events in the simulated Poissonian catalogs. Thus we conclude that the
Reasenberg and ETAS methods are more effective compared to the other two algorithms.
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(a)

(b)

Figure 8: An example of 4 years (out of 69 years) of one simulated Poissonian catalog with
λ = 1.825 × 10−3(count/year/km2). (a) Locations of earthquakes, where circles are simulated
earthquakes. We computed the removal ratios of the declustering algorithms using the earthquakes
in the shaded 100km× 100km region. (b) Magnitudes and occurrence times of earthquakes, where
every vertical line represents one occurrence.
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Figure 9: Removal ratios when testing four declustering algorithms on simulated Poissonian catalogs
with different mean occurrence rates.

Hazard analysis for Oklahoma City

After studying the performance of the four declustering methods on the declustered catalogs, we
explored their effects on the induced seismic hazard analysis by generating 2016 and 2017 hazard
curves for Oklahoma City. The hazard curve described the annual rate of exceeding a given intensity
measure (IM) and was computed using the PSHA method:

λ(IM > im) =

n

i=1

νi

mmax

mmin

P (IM > im|ri,m)fM (m)dm (6)

The PSHA integrates hazard generated by earthquakes with magnitudes between mmin and
mmax from all seismic sources. In this study, we divided the Oklahoma and Kansas region into
0.2◦ × 0.2◦ grids and considered each grid as a seismic point source, with the site-source distance
defined as the distance from the center of the grid to the site of interest. νi is the annual rate of
earthquakes for a seismic source i and is computed from a declustered catalog. We estimated νi as the
number of mainshocks in a given year. P (IM > im|ri,m) is the probability of an earthquake, with a
magnitude of m and ri km away from the site of interest, producing an IM higher than a predefined
value. Its value is determined using a ground motion prediction equation (GMPE). In this study,
the IM was defined as Sa(0.1s), which was determined using the GMPE introduced by Atkinson
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(2015). For every seismic source, fM was the probability density function of the Gutenberg-Richter
distribution truncated between magnitudes of 2.7 and 7.0. Though b often varies with regions, we
used b = 1.0 to be consistent with the USGS seismic hazard forecast (Petersen et al., 2015, 2016,
2017, 2018).

Figure 10 illustrates one-year hazard curves generated using the 2016 and 2017 Oklahoma-Kansas
catalogs. The Gardner and Knopoff algorithm with b = 1.0, the method used in the USGS seismic
hazard forecast, generated the lowest hazard level in 2016. This was because the Gardner and
Knopoff method removed more earthquakes compared to other declustering algorithms, as shown
in Figure 3, which resulted in lower earthquake rates (νi in Equation 6) and thus lower hazard
levels. The hazard curves from the Reasenberg and Zaliapin and Ben-Zion algorithms are similar
and can be four times higher than the Gardner and Knopoff case. Moreover, besides the Gardner
and Knopoff curve, all other curves show a significant drop in 2017, which is consistent with the
expectation as the number of events was reduced by half in 2017. However, the Gardner and Knopoff
method produced an increased hazard level in 2017 due to the use of window method together with
the sparser earthquake distribution in 2017, which resulted in the increased number of mainshocks
identified. This can explain the increased hazard level in the 2018 USGS one-year seismic hazard
forecast, despite the reduced number of recorded earthquakes in 2017. Overall, the Gardner and
Knopoff and ETAS methods remove more events and generate lower hazard levels compared to the
other two algorithms. The Gardner and Knopoff algorithm also fails to capture the change in the
earthquake rate and thus seismic hazard.

Figure 10: One-year hazard curves of Sa(0.1s) for Oklahoma City in 2016 and 2017 using the four
declustering methods.
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Conclusions

This study evaluated the suitability of using four declustering algorithms proposed by Gardner and
Knopoff (1974), Reasenberg (1985), Zaliapin and Ben-Zion (2013) and the stochastic declustering
method (Zhuang et al., 2002) based on the ETAS model (Ogata, 1988, 1998). We explored three
aspects of the algorithms’ behaviors: 1) the removal of events with stronger shaking intensities
than the events retained, 2) their performances on declustering induced, natural, and simulated
Poissonian catalogs, 3) their impacts on the hazard analysis for Oklahoma City.

We evaluated how often the Gardner and Knopoff, Reasenberg and Zaliapin and Ben-Zion algo-
rithms took out dependent events with ground motions stronger than their mainshocks. We com-
pared the Sa(0.1s) from ground motions of mainshocks and their corresponding dependent events
from the Oklahoma-Kansas catalog. The Gardner and Knopoff algorithm often identified events
with stronger shaking as aftershocks — 84% of mainshocks had Sadependent event/Samainshock > 1
and 39% had Sadependent event/Samainshock > 4. The other two algorithms also removed depen-
dent events with stronger shaking, but less often — only around 10% of the mainshocks had
Sadependent event/Samainshock > 4. Large Sadependent event/Samainshock values indicate that the algo-
rithm identifies aftershocks that are distant from mainshocks but have similar magnitudes, which
suggests the removal of events that potentially contribute to hazard level. The large ratios pro-
duced by the Gardner and Knopoff algorithm were due to the large spatial window defined in this
algorithm, which was developed based on California earthquakes. Preferred approaches to mini-
mize the removal of stronger dependent events are using the Reasenberg and Zaliapin and Ben-Zion
algorithms, or developing region-appropriate parameters for the Gardner and Knopoff algorithm.

We used the four methods to decluster California and Oklahoma-Kansas earthquake catalogs
and studied their behaviors. For the California catalog, all algorithms worked well as they removed
dependent events and resulted in a stable estimation of background rates. Moreover, they all
generated b̂ close to 1.0. For Oklahoma and Kansas, the effect of different declustering algorithms
on the declustered catalog was significant. The Gardner and Knopoff algorithm removed many more
events and resulted in almost constant rates along the time. It also generated the smallest b̂ = 0.79.
Other three algorithms removed some events and were able to preserve the changing background
rate. However, the ETAS method generated the largest b̂ = 1.40, which suggested that it potentially
overestimated the foreshock effect and produced small probabilities of large earthquakes (M > 4.5)
being mainshocks. This can result in an underestimation of the hazard level. These observations
address the importance of selecting a suitable declustering algorithm for induced seismicity.

We then tested algorithms on simulated Poissonian catalogs where earthquake occurrences were
independent of each other. The Reasenberg and ETAS methods had the desired behavior of re-
moving negligible numbers of earthquakes from simulated catalogs. However, the Gardner and
Knopoff method removed a considerable number of events, and the removal ratio increased with
the mean earthquake occurrence rate. It exceeded 0.5 when the occurrence rate was approximately
5 × 10−3count/year/km2. Both values were close to the declustered 2014-2018 California catalog.
These observations suggest that the Gardner and Knopoff method identifies independent events as
aftershocks or foreshocks when the background earthquake rate is high. The Zaliapin and Ben-Zion
method removed almost constant numbers of earthquakes (32%) from simulated catalogs with dif-
ferent λ. This is because, for a Poisson process, the distribution of nearest-neighbor distances with
different λ is unimodal but not Gaussian.

Finally, we computed the 2016 and 2017 one-year hazard curves for Oklahoma City using the four
declustering algorithms. The Gardner and Knopoff algorithm, with b = 1.0, generated the lowest
hazard level in 2016, which was almost one-fourth of that from the Reasenberg and Zaliapin and
Ben-Zion algorithms. This was because the Gardner and Knopoff method removed more earthquakes
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(80%) compared to the latter two methods (30%). For the Gardner and Knopoff method, there was
a slight increase in the hazard level in 2017, though the number of recorded earthquakes decreased
by half. This was due to the use of the window method and the sparser earthquake distribution
in 2017, which resulted in an increased number of mainshocks identified, thus an increased hazard
level. These observations suggest that the Gardner and Knopoff algorithm fails to capture the
changing seismic rate and the hazard levels in different years. The use of this algorithm partly
explains the increased hazard in the 2018 USGS seismic hazard forecast despite a reduced number
of earthquakes the prior year.

Data and Resources

The earthquake occurrences in California and the Oklahoma and Kansas region were obtained
from the USGS earthquake catalog website (https://earthquake.usgs.gov/earthquakes/search, last
accessed March 2019). Ground motion records were collected from Incorporated Research Institu-
tions for Seismology (IRIS) Data Services (http://ds.iris.edu/ds/nodes/dmc/, last accessed April
2019) using the program Standing Order of Data (SOD, http://www.seis.sc.edu/sod/, last accessed
April 2019).
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