
1 INTRODUCTION  

Seismic design provisions in building codes aim 
to provide adequate collapse safety of structures 
even in extreme events. Collapse response of struc-
tures is characterized by highly nonlinear behavior 
of its components and its assessment requires non-
linear analysis models that capture large inelastic de-
formations with significant cyclic strength and stiff-
ness degradation. In addition, for comprehensive 
assessment of collapse, uncertainties coming from 
various sources at component level should be char-
acterized and propagated in a probabilistic frame-
work through a system reliability approach. The 
sources of uncertainties can be listed as the variabil-
ity in ground motion and structural response simula-
tions. The uncertainty in structural response simula-
tions can be due to design and modeling of the 
structure. Different structural idealizations ranging 
from phenomenological models to finite element 
discretizations capture certain modes of failure. This 
brings uncertainty in terms of utilizing different 
analysis methods and different definitions of analy-
sis model parameters. Model parameters are also 
subject to uncertainty. Conducting structural analy-
sis with the median (or expected) values of the mod-
el parameters do not account for the variability in 
the properties and the response characteristics of 
structural components.  

Using a probabilistic collapse response assess-
ment approach, this study aims to assess the effects 

of model parameter uncertainties on structural col-
lapse safety. Correlations of random variables play a 
significant role in uncertainty propagation. Accurate 
assessment of modeling uncertainty in terms of col-
lapse response requires reliable estimations of corre-
lations of model parameters within and between 
components in a structure. 

An early attempt to assess the effects of uncertain-
ties in modeling parameters on collapse response is 
done by Ibarra & Krawinkler (2003), in which they 
show that post-yield stiffness and ductility capacity 
are the parameters most affecting collapse response. 
Later, Haselton (2006) quantified and propagated 
the uncertainties using the First-Order Second-
Moment (FOSM) approximation. Vamvatsikos & 
Fragiadakis (2009) and Dolsek (2009) used Monte 
Carlo simulation with Latin-Hypercube sampling to 
assess the effects of uncertainties in model parame-
ters on collapse response of structures.  

Rajashekhar & Ellingwood (1993) utilized re-
sponse surface method to approximate limit state 
functions in structural reliability problems whereas 
Papadrakakis et al. (1996) used artificial neural net-
works (ANN) to compute probability of failure of 
elastoplastic structures. Dengi et al. (2005) com-
bined ANNs with structural reliability methods to 
estimate limit state functions and the partial deriva-
tives. Liel et al. (2009) with a robust nonlinear struc-
tural model used the response surface approach to 
predict collapse response which incorporates ground 
motion and modeling uncertainties. This study 
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builds on the findings of Liel et al. (2009). We aim 
to assess the effects of modeling uncertainties on 
collapse response with emphasis on quantifying cor-
relation of model parameters. Alternative reliability 
methods to assess the effects of modeling uncertain-
ty in collapse response assessment are also investi-
gated. 

2 COLLAPSE ASSESSMENT PROCEDURE 

Collapse simulation of structures requires numerical 
models that can reproduce the nonlinear deformation 
demands and degradation in stiffness and strength in 
the elements due to repeated cycles of loading. The 
component hinge model originally developed by Ib-
arra et al. (2005) is capable of simulating nonlinear 
hysteretic behavior of reinforced concrete (RC) 
beam-column elements. It is based on a tri-linear 
monotonic backbone curve, relating member mo-
ment and rotation, along with nonlinear hysteretic 
rules to simulate strength and stiffness degradation 
under cyclic loading. The strength of this model in 
collapse simulation is due to the post-capping 
branch that is characterized by a negative slope. This 
portion of the backbone curve simulates strain-
softening behavior related to concrete crushing, re-
bar fracture and buckling. The accuracy of the simu-
lation depends on realistic characterization of pa-
rameters of the phenomenological model. Therefore, 
in this study we assume six parameters defining the 
backbone curve, namely θy, My, θcap,pl, Mc/My, θpc 
and γ are random variables. An example backbone 
curve displaying model parameters is provided in 
Figure 1. 

Incremental dynamic analysis (IDA) is a fairly es-
tablished technique used to predict collapse 
(Vamvatsikos & Cornell 2002).  In this technique 
nonlinear response history analysis is conducted us-
ing a ground motion that is scaled to various intensi-
ty levels. Collapse intensity is estimated as the in-
tensity level that causes dynamic instability. This 
procedure is repeated for a number of ground mo-
tions. Different ground motions cause collapse at 
different ground motion intensities, producing rec- 
 

 

Figure 1. Backbone Curve of the Component Hinge Model. 

ord-to-record variability in collapse capacities. To 
account for record-to-record variability, 22 ground 
motion record pairs from the FEMA-P695 (FEMA 
2009) far-field ground motion set are used in this 
study. The data set is selected such that it consists of 
extreme motions that may cause structural collapse. 
In this study, incremental dynamic analysis with a 
component hinge model is used for collapse assess-
ment with the OpenSees analysis platform. 

 

3 BRIDGE COLUMN MODEL 

A reinforced concrete bridge column that was 
tested full-scale in NEES Outdoor Shake Table at 
UCSD in 2010 (PEER & NEES 2010) is used as a 
case study structure for the assessment of modeling 
uncertainties. The bridge column is designed accord-
ing to Caltrans Seismic Design Criteria and Bridge 
Design Specifications (Caltrans 2004, 2006) and 
seismic performance of bridge columns built in 
compliance with current U.S. standards is aimed to 
be investigated. 

The circular column has a diameter of 4 ft (1.2 m) 
and height of 24 ft (7.2 m). To mobilize the column 
capacity, a 250 ton (2,245 kN) reinforced concrete 
block was cast on top of the column (Terzic et al. 
2012). 

The bridge column is modeled as a single degree 
of freedom structure with a concentrated hinge mod-
el defined at the base. The first mode period of the 
structure (T1) is obtained as 1.11 sec. The backbone 
curve parameters for the bridge column model have 
been calibrated using experimental results and the 
calibrated parameters are assumed to reflect median 
properties. The bridge column is observed to be 
highly ductile having a ductility capacity of 6.45. 

 

4 ASSESSMENT OF CORRELATION OF 
MODEL PARAMETERS BETWEEN AND 
WITHIN COMPONENTS 

Haselton et al. (2008) calibrated the concentrated 
plastic hinge model by Ibarra et al. (2005) to repre-
sent nonlinear hysteretic behavior of reinforced con-
crete (RC) beam-columns. The component calibra-
tion database consists of 255 tests of rectangular RC 
columns that failed either in flexure or in combined 
flexure-shear mode (Berry et al. 2004, Haselton 
2008). The database consists of 42 test groups. A 
test group refers to a set of tests conducted by one 
researcher. The number of tests per group range be-
tween 1 and 24. Haselton et al. used the database to 
calibrate empirical predictive equations for the 
backbone curve parameters. The predictive equa-
tions for θpc, θcap,pl, Mc/My and γ are reported in 



Haselton et al. (2008). Readers are referred to 
Panagiotakos & Fardis (2001) for equations regard-
ing θy and My. The goodness of fit of the predictive 
equations is investigated through residuals which are 
defined using the below equation: 

 

                         
              (1) 

 

where        represents the logarithm of the ob-

served value of the random variable, RV, for test j of 

the i
th

 test group,               
 is the predicted 

value for the random variable and     is the residual 

having a mean of zero and standard deviation of σ. 

Haselton et al. (2008) also reported the median, 

mean and standard deviation of residuals associated 

with the calibrated tests.  
The correlations within component model pa-

rameters are computed using Pearson’s product-
moment correlation coefficient between residuals of 
the random variables and are displayed in Table 1: 
 

 
Table 1. Correlation coefficients within component 
model parameters. 

 
θy My Mc / My θcap,pl θpc γ 

θy 1.0 0.6 0.4 0.1 0.5 0.2 

My 

 

1.0 0.3 0.1 0.2 0.1 

Mc / My 

 

1.0 0.3 0.2 0.2 

θcap,pl 

 

1.0 0.2 0.1 

θpc (symmetric) 1.0 0.4 

γ 

 

1.0 

 

Assessment of correlation of model parameters 
between components is important to capture interac-
tions between different components of a system and 
accurately estimate of system failure probabilities. 
We assume that correlations among the sets of ex-
periments conducted by different test groups give an 
estimation of the correlations between component in 
a structure. In Figure 2, all pairs of residuals ob-
tained from Equation 1 for tests within the same test 
group are plotted for each model parameter. Within 
each plot, each test group is represented with a spe-
cific color and symbol combination. 

Among the six plots, the My and θy data show 

strong grouping of residuals by test group. This sug-

gests that all of the My and θy values observed in a 

given test group tend to have similar variation away 

from their corresponding predictions. The observed 

grouping suggests that the parameter uncertainty of 

θy and My in the building’s components has signifi-

cant correlation from one component to another. To 

quantify these effects, two-way mixed effects re-

gression analysis is utilized (Pinheiro & Bates, 

2000). In mixed effects regression, the residual     

of Equation 1 is further grouped to take into account 

factors related to fixed and random effects terms. 

Thus, it is written as: 
 

                           
           

                              (2) 

 

In the above equation, indices k, i and j refer to 

the random variable of interest, test group and test 

number, respectively. It is assumed that    is nor-

mally distributed with a mean of zero and standard 

deviation of   , i.e.   ~N(0,  
2
). Using the similar 

 

 

 
 

Figure 2. Residuals between observed and predicted values for each random variable. 



 
Table 2. Correlation coefficients of model parameters between and within components. Using the notation in 

Equation 2, correlation coefficients are given for j=1 and 2. 

 

 

COMPONENT j=1 COMPONENT j=2 

  

 
θy1 My1 Mc/My1 θcap,pl1 θpc1 γ1 θy2 My2 Mc/My2 θcap,pl2 θpc2 γ2 

C
O

M
P

O
N

E
N

T
 j

=
1

 θy1 1.0 0.4 0.1 0.1 0.4 0.2 0.7 0.3 0.1 0.1 0.3 0.2 

My1 

 

1.0 0.3 0.1 0.1 0.1 0.3 0.9 0.3 0.1 0.0 0.1 

Mc/My1 

  

1.0 0.1 0.0 0.0 0.1 0.3 0.6 0.1 0.0 0.0 

θcap,pl1 

   

1.0 0.1 0.1 0.1 0.1 0.1 0.4 0.0 0.0 

θpc1 

    

1.0 0.4 0.3 0.0 0.0 0.0 0.2 0.3 

γ1 

     

1.0 0.2 0.1 0.0 0.0 0.3 0.5 

C
O

M
P

O
N

E
N

T
 j

=
2

 θy2 

      

1.0 0.4 0.1 0.1 0.4 0.2 

My2 

       

1.0 0.3 0.1 0.1 0.1 

Mc/My2 (symmetric) 

   

1.0 0.1 0.0 0.0 

θcap,pl2 

         

1.0 0.1 0.1 

θpc2 

          

1.0 0.4 

γ2 

           

1.0 

 

notation,   ~N(0,  
2
),   ~N(0,  

2
), 

      ~N(0,   
2
),       ~N(0,   

2
) and 

     ~N(0,σ
2
). It is noted that the standard deviations 

are obtained using the regression model defined by 

Equation 2. Given the model of Equation 2, correla-

tion coefficients is obtained using Equations 3,4 and 

5. 

 

             
 

  
    

     
 

  
    

    
     

     
           (3) 

 

In Equation 3, k and k' represent different random 

variables and              
 reflects the correlation be-

tween random variables, k and k’, in one component 

of a structure, i.e. j
th

 component in i
th

 structure. 
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In Equation 4, j and j’ represent different compo-

nents in a structure and              
 is the correlation 

of a random variable, k, between different compo-

nents of the i
th

 structure. 
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In Equation 5,               
 is assumed to reflect 

the correlation between random variables, k and k’, 

of different components of a structure, i.e. compo-

nents j and j’ of structure i. 

 

 
Table 2 shows the correlation coefficients ob-

tained using the aforementioned approaches. These 
correlation coefficients are utilized in assessing col-
lapse safety of frame structures. It is noted that using 
different approaches resulted in different correlation 
coefficients of model parameters within compo-
nents. 

5 MODELING UNCERTAINTY ASSESSMENT 
OF AN EXAMPLE BRIDGE COLUMN 

Using the FEMA-P695 far field record set, incre-
mental dynamic analysis is performed on the bridge 
column. The backbone curve of the bridge column is 
calibrated using experimental results and the cali-
brated parameters are assumed to be median compo-
nent parameters. IDA curves for the median model 
are displayed in Figure 3a.  

To assess modeling uncertainty, a Monte Carlo 
(MC) approach is utilized. 250 realizations of com-
ponent model parameters are obtained using a mul-
tivariate normal joint distribution of the parameters. 
To simulate realizations of component model pa-
rameters having a multivariate joint distribution of 
parameters, mean, standard deviation and correlation 
coefficients of random variables are needed. As 
mentioned previously, the calibrated parameters are 
assumed to be median component parameters. The 
logarithmic standard deviations (   ) for θpc, γ, θcap,pl 
and Mc/My are reported in Haselton et al. (2008) as 
0.86, 0.64, 0.63 and 0.13, respectively. For θy and 
My using the database and the predictive equations 
of Panagiotakos & Fardis (2001) the dispersion val-
ues are computed as 0.43 and 0.3, respectively.  Cor- 



 

 

 
 
Figure 3. a) IDA curves of the median model obtained using 44 
FEMA-P695 ground motions b) Randomly selected 44 IDA 
curves from MC Simulations c) Collapse Fragility Curves ob-
tained using Median Model Parameters and MC Simulations of 
model parameters. MC Simulations are indicated as the curve 
with model uncertainty. 

 
 

relation coefficients are used as given in Table 1. In-
cremental dynamic analysis is performed for MC 
simulations and IDA curves are displayed in Figure 
3b.  

Probability of collapse given a ground motion in-
tensity measure, IM, P(C|Sa(T1,5%)) can be ob-
tained using Equation 6: 
 

                 
                            

             
   

(6) 

 

In Equation 6, Φ( ) is the standard normal cumula-

tive distribution function.               and 

              are the mean and standard deviation of 

           , respectively.            is the spec-

tral acceleration at the fundamental period of the 

structure, T1=1.11 sec and damping as 5%. Method 

of moments is used to compute                and 

            . The collapse fragility curves obtained 

using median model parameters and MC simulations 

are given in Figure 3c. 

By neglecting model uncertainty, it is observed 

that unconservative results are obtained. 

Incorporating modeling uncertainties caused 30% 

decrease in the median collapse capacity and 25% 

increase in dispersion of the collapse fragility curve 

compared to the fragility curve obtained using 

median model parameters. 

The collapse fragility curves are integrated with 

the hazard curve at a representative site at Los 

Angeles located at 34.00° latitude, -118.16° 

longitude where near fault effects are not expected 

to be observed (Haselton 2006). When model 

uncertainty is considered, the collapse rate is 

observed to be 3.6 times the mean annual collapse 

rate (λc) of the one obtained using median properties. 

The intensity level corresponding to maximum 

considered earthquake, which is defined by 2% 

probability of exceedance in 50 year, is 0.73 g and at 

this intensity level, probability of collapse, Pcollapse, 

increases from 0.5% to 5% when modeling 

uncertainty is taken into account. 

6 STRUCTURAL COLLAPSE CAPACITY 
PREDICTION USING ALTERNATIVE 
METHODS 

Collapse assessment of structures requires computa-

tionally intensive nonlinear response history anal-

yses. Incorporation of uncertainties related to ground 

motion and structural modeling increases computa-

tional demand significantly. To practically consider 

modeling variability in collapse simulation, alterna-

tive predictive models are needed to estimate col-

lapse fragility of a given structural model. In this 

study we present three approaches, namely First-

Order Second-Moment, response surface and ANN 

methods. 

6.1 First-Order Second-Moment Method (FOSM) 

 

FOSM is a standard method to propagate 

uncertainties. Using a Taylor series expansion 

around the mean, the limit state function defining 

structural collapse in terms of random variables is 

linearized, such that the response given mean inputs 

is unchanged. The variance of the response is 

computed using the gradients of limit state function 

with respect to the random variables. The details of 

this approach can be found in Baker & Cornell 

(2003). Since the limit state function does not have 

an analytical functional form, the gradients of the 



limit state function is obtained by perturbing each 

random variable in a series of sensitivity analyses. 

For this study, each variable is perturbed up to +/-

      away from their means with increments of 

0.25    and a linear trend line is fitted in log scale to 

compute the two-sided derivatives. For Mc/My and γ, 

we observed a strong nonlinear relationship between 

the random variables and the collapse capacity. It is 

observed that the collapse capacity estimations do 

not increase with the increase in γ and Mc/My. Since 

reducing these two variables is more critical for the 

structure and it leads to lower collapse capacities, 

leftward gradient, which is obtained by perturbing 

the variables only in negative direction, is used for 

these variables in FOSM calculations. 

The extreme values each random variable is 

assigned during FOSM calculations and their 

relative effect on collapse capacity estimations is 

displayed through a tornado diagram in Figure 4. 

The diagram shows the sensitivity of each model pa-

rameter with respect to the median collapse capacity. 

It is observed that median collapse capacity is highly 

sensitive to θy, θcap,pl, θpc and My. 

6.2 Response Surface Approach 

 
To calibrate the predictive models of response sur-

face and ANN approaches, design of experiments 

with central composite design is used (Pinto et al. 

2005). Each random variable is perturbed +/-1.7    

from the mean individually, and in combinations 

with other random variables at +/-1   .  For the six 

random variables used in this study, experimental 

design dataset is composed of 73 combinations of 

these variables. For each design point, a nonlinear 

model is created with modified parameter values, 

and incremental dynamic analysis is performed with 

FEMA-P695 far-field ground motion set. Fragility 

 

 

 
Figure 4. Tornado diagram showing the sensitivity of model 
parameters. Dark and light gray bars show the change in medi-
an collapse capacity when the associated random variables are 
perturbed +      and -     , respectively. 

functions are obtained using the incremental dynam-

ic analysis results for each nonlinear analysis model. 

For response surface approach, using the experi-

mental design set, a second-order polynomial func-

tion is fit to Sa(T1,5%) values corresponding to 0.5 

probability of failure. For given model parameters, 

response surface predicts median collapse capacity 

and the collapse fragility function is obtained using 

the median collapse capacity prediction and record-

to-record variability of the median model as disper-

sion.  

Using Monte Carlo simulation, various realiza-

tions of model parameters are then obtained and the 

corresponding fragility functions are predicted. For 

each Sa(T1,5%) level, the mean of probabilities from 

the predicted fragility functions are obtained to 

compute the final fragility function, which incorpo-

rates modeling and ground motion uncertainty. 

 

6.3 Artificial Neural Network Approach 

 
For the ANN approach, Sa(T1,5%) values corre-
sponding to probabilities of 0.1 and 0.25 are ob-
tained from the individual fragility functions of ex-
perimental design dataset. The two-point 
representation of the fragility function is motivated 
by the work of Eads et al. (2012) who proposed an 
efficient method where two intensity levels on a fra-
gility function is selected such that the selected in-
tensities contribute to collapse risk significantly. 
They observed that lower tail of the collapse fragili-
ty function dominates collapse risk. 

The neural network uses experimental design data 

as the training set. In addition to the training, cali-

bration of neural networks involves validation and 

testing, which increase their predictive capabilities. 

For validation and testing sets, new data is generated 

randomly having a size 15% of the experimental de-

sign dataset. 
A multi-layer feed forward network is calibrated 

such that it outputs Sa(T1,5%) values at the two 
probability levels, namely 0.1 and 0.25. The fragility  

 
 

 

 

 

 

 

 

 

 

 

 
Figure 5. Illustrative figure showing ANN approach. 



function is predicted by fitting through the two pre-

dicted points. For each Sa(T1,5%) level, the mean of 

probabilities from the predicted fragility functions 

are obtained to yield estimation of the final fragility 

function, which incorporates modeling and ground 

motion uncertainty. Figure 5 illustrates this ap-

proach. 

7 RESULTS 

Figure 6a shows the collapse fragility functions ob-

tained using MC simulations, ANN, response sur-

face and FOSM methods. The collapse fragility 

curve obtained using ANN approach is similar to the 

one obtained using MC simulations. Close estima-

tion of the MC simulation result is also obtained 

with the response surface method.  

The number of incremental dynamic analysis con-

ducted are 3,212, 3,740, 4,180 and 11,000 for re-

sponse surface, FOSM, ANN and MC simulation 

approaches, respectively. Since 44 ground motions 

are used for each structural model, the number of 

different structural models used are 73, 85, 95 and 

250 for response surface, FOSM, ANN and MC 

simulation approaches, respectively. The computa-

tional demand for response surface and ANN is sim-

ilar. Although FOSM have comparable number of 

analysis with response surface and ANN, it is possi-

ble to conduct FOSM with only 7 structural models.  
 
 

 
Figure 6. a) Collapse fragility functions and hazard curve at a 
representative site at Los Angeles b) Collapse risk 
deaggregation curves obtained using MC Simulation, FOSM, 
ANN and Response Surface approaches. 

85 different models are used in this study to increase 

the confidence in gradient computations. For MC 

simulations, there is a trade-off between the number 

of simulations conducted and the level of accuracy 

in the computations. One can reduce the number of 

MC simulations; however the variability in the re-

sults increases. 

Response surface and ANN approaches can cap-

ture nonlinear relationships between the random var-

iables and collapse capacity, whereas FOSM is not 

capable of capturing the nonlinear relations. From 

Figure 3c, we observed that incorporating modeling 

uncertainties increases the dispersion in collapse 

fragility function and shifts the median collapse ca-

pacities to the left. As discussed in Section 6.1, us-

ing a Taylor series expansion around the mean, 

FOSM is not able to reproduce the shift in the medi-

an collapse capacity; whereas other methods are ob-

served to catch this behavior. 

Also indicated in Figure 6a is the hazard curve at 

the representative site at Los Angeles. At each 

Sa(T1,5%) level, the collapse fragility functions are 

multiplied with the slope of the hazard curve to ob-

tain collapse risk deaggregation curves (Eads et al. 

2012) given in Figure 6b. The area under a collapse 

risk deaggregation curve gives λc and the curve iden-

tifies the ground motion intensities that contribute 

most to λc. It is observed that for this structure, 

ground motions with Sa(T1, 5%)=0.75 g contribute 

most to the collapse risk. ANN approach provided 

good predictions both in terms of collapse fragility 

function and λc. Although response surface approach 

predicts the overall collapse fragility curve suffi-

ciently, the misfit in the lower tail of the distribution 

resulted in overestimation of λc by 40%. On the oth-

er hand, although the collapse fragility curve pre-

dicted by FOSM was far-off, the underestimation in 

λc is 20%. 

8 CONCLUSIONS 

In this study, we assessed the effects of modeling 
uncertainty in the collapse response of a bridge col-
umn. For the random variables defining the analysis 
model, correlation coefficients are quantified by the 
statistical analysis of calibration database of 
Haselton et al. (2008). Correlations are investigated 
both between multiple parameters for a single com-
ponent and between parameters for various compo-
nents in a building. Two approaches are utilized to 
assess correlations in a structure. As the first ap-
proach, Pearson’s product-moment correlation coef-
ficients are computed which reflect correlations of 
model parameters within components. The second 
approach utilizes two-way mixed effects regression, 



which resulted in correlation of model parameters 
both between and within components. Using the cor-
relation coefficients and the multivariate distribution 
of the random variables, modeling uncertainty in the 
collapse response of a bridge column is assessed. It 
is observed that using median model parameters in 
collapse risk assessment and not incorporating of 
modeling uncertainties leads to unconservative re-
sults. The collapse risk and the probability of col-
lapse at a given intensity level is underestimated es-
pecially at the intensities corresponding to the lower 
tail of the collapse fragility function. To decrease 
computational demand in the probabilistic collapse 
analysis, alternative methods are explored to predict 
collapse capacity. These methods include FOSM, re-
sponse surface and ANN methods. It is observed 
that response surface and ANN methods by captur-
ing the nonlinear relationship between model pa-
rameters and collapse capacity provided good esti-
mations of the overall collapse fragility curve. 
FOSM, on the other hand, is observed to be limited 
in estimating collapse fragility curve. However, the 
mean annual frequency of collapse prediction by 
FOSM is observed to be comparable to the complex 
response surface prediction. ANN approach gives 
good estimations of both collapse fragility curve and 
the mean annual frequency of exceedance. 
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