
Ⓔ

Spatial and Spectral Interpolation of Ground-Motion

Intensity Measure Observations

by C. Bruce Worden, Eric M. Thompson, JackW. Baker, Brendon A. Bradley,*

Nicolas Luco, and David J. Wald

Abstract Following a significant earthquake, ground-motion observations are
available for a limited set of locations and intensity measures (IMs). Typically,
however, it is desirable to know the ground motions for additional IMs and at locations
where observations are unavailable. Various interpolation methods are available, but
because IMs or their logarithms are normally distributed, spatially correlated, and
correlated with each other at a given location, it is possible to apply the conditional
multivariate normal (MVN) distribution to the problem of estimating unobserved IMs.
In this article, we review the MVN and its application to general estimation problems,
and then apply the MVN to the specific problem of ground-motion IM interpolation.
In particular, we present (1) a formulation of the MVN for the simultaneous interpo-
lation of IMs across space and IM type (most commonly, spectral response at different
oscillator periods) and (2) the inclusion of uncertain observation data in the MVN
formulation. These techniques, in combination with modern empirical ground-motion
models and correlation functions, provide a flexible framework for estimating a
variety of IMs at arbitrary locations.

Electronic Supplement: Demonstration Python script for the evaluation of the
multivariate normal (MVN) with additional uncertainty.

Introduction

Following an earthquake of any significance, numerous
sources of information can be used to constrain maps of
shaking intensity. Examples include observations of ground
motions from seismic instrumentation, online “Did You Feel
It?” (DYFI) reports (Wald et al., 2012), and field surveys of
structural performance (e.g., Bommer and Stafford, 2012).
The ground motions may be reported as a variety of intensity
measures (IMs), such as peak ground acceleration (PGA),
pseudoacceleration response spectra (SA) at selected
oscillator periods (T), or macroseismic intensity (MI). These
observations are made at specific locations (or, in the case of
MI, for a specific localized area) and are not always available
at the spectral period of interest. For many purposes, it is
necessary to estimate IMs for additional locations and
spectral periods. One example is ShakeMap (Worden and
Wald, 2016), in which the IMs available in near-real time
are reported for a limited set of spectral ordinates.

Empirical studies have demonstrated that ground-
motion IMs are spatially correlated (e.g., Goda and Hong,

2008), and different IMs are also correlated with each other
at the same location (e.g., Baker and Jayaram, 2008; Bradley,
2010, 2012). It is also reasonable to consider ground-motion
IMs or their logarithms (e.g., MI or ln(PGA)) to be normally
distributed, conditional upon rupture parameters such as
magnitude and distance (Jayaram and Baker, 2008). These
features make it possible to apply the conditional multivari-
ate normal (MVN) to the problem of IM estimation.

In some cases, observed IMs may be available at a site of
interest, but we wish to estimate IMs that are not included in
the set of reported IMs. Baker (2011) summarizes the condi-
tional spectrum approach, in which the distribution of SA at
any period is conditioned upon an SA value at the same
location. Bradley (2010, 2012) extended the method to
account for the dependence of seismic response on non-
spectral-acceleration IMs, such as those that are related to the
duration or energy of the ground motion. Kishida (2017)
makes use of the MVN to generalize the conditional spec-
trum approach to include multiple conditioning periods,
which is a situation commonly encountered for near-real-
time systems such as ShakeMap. The sites of interest, how-
ever, are most commonly not coincident with observations.
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In these cases, we wish to know the distribution of the IMs
conditioned upon the available nearby observations. Park
et al. (2007), Stafford (2012), and Bradley (2014) applied
the MVN to the problem of interpolating IMs to sites of
interest, based on the work of Vanmarcke (1983).

More generally, we wish to interpolate a vector of IMs
over a spatial region, where the distribution of a particular IM
is conditioned on observations of any IM at an arbitrary
location. After reviewing the techniques discussed above, we
give a formulation of the MVN that allows for simultaneous
conditioning across multiple IMs and space, and provide
examples for cases with SA at multiple periods and MI
observations. Finally, the MVN (as typically formulated)
assumes that observations are precise (i.e., that they have no
uncertainty). It is often the case, however, that the condition-
ing data have nonzero uncertainty; this is especially impor-
tant for MI data, but uncertainties in instrumental IM data can
also arise due to differences in data processing, such as the
manner in which orthogonal components are combined
(Boore and Kishida, 2017). Here, we present a method that
accounts for the uncertainty of the conditioning data for
the MVN.

The Conditional Multivariate Normal Distribution

We begin with a brief review of the MVN. Typically, we
have one or more estimates of the mean and variance of some
quantity, a set of observations, and we wish to estimate the
value of the parameter some distance from our observations.
In this context, distance can refer to spatial separation, or sep-
aration in spectral period, time, or any other parameter(s) for
which the correlation among observations may be determined.

For a variable of interest Y, assume we wish to compute
predictions (Y1) at M target ordinates, conditioned on N ob-
servations (Y2). The MVN is typically summarized (see e.g.,
Johnson andWichern, 2002) as a function of a random vector
partitioned into these two components:

EQ-TARGET;temp:intralink-;df1;55;293Y �
8<
:

Y1

��
Y2

9=
;; �1�

with mean

EQ-TARGET;temp:intralink-;df2;55;229μY �
( μY1

��
μY2

)
; �2�

and covariance

EQ-TARGET;temp:intralink-;df3;55;165ΣY �

ΣY1Y1
j ΣY1Y2

M ×M j M × N
�� �� ��
ΣY2Y1

j ΣY2Y2

N ×M j N × N

2
66664

3
77775; �3�

in which M ×M, M × N, N ×M, and N × N give the
dimensions of the partitioned arrays.

Given a set of observations Y2 � y2, we define a vector
of residuals

EQ-TARGET;temp:intralink-;df4;313;709ζ � y2 − μY2
: �4�

The distribution of Y1, given that Y2 � y2, is MVN with
mean and covariance

EQ-TARGET;temp:intralink-;df5;313;655μY1jy2 � μY1
� ΣY1Y2

Σ−1
Y2Y2

ζ; and �5�

EQ-TARGET;temp:intralink-;df6;313;620ΣY1Y1jy2 � ΣY1Y1
− ΣY1Y2

Σ−1
Y2Y2

ΣY2Y1
: �6�

The values of μY would typically be derived from a model of
Y (in this article, an empirical ground-motion model
[GMM]). The elements of ΣY in equation (3) are

EQ-TARGET;temp:intralink-;df7;313;549ΣYiYj
� ρYiYj

σYi
σYj

; �7�
in which σYi

and σYj
are taken from a GMM, and ρYiYj

is the
correlation of the ith and jth elements ofY conditional on the
rupture and site parameters.

To aid with intuition in subsequent discussion, we note
that in the bivariate case equations (5) and (6) reduce to

EQ-TARGET;temp:intralink-;df8;313;457μY1jy2 � μY1
� σY1

σY2

ρY1Y2
�y2 − μY2

�; and �8�

EQ-TARGET;temp:intralink-;df9;313;401σ2Y1jy2 � �1 − ρ2Y1Y2
�σ2Y1

: �9�

Spectral Interpolation

For P observed IMs at a site, we wish to estimate Y at Q
additional IMs. We follow the conditional spectrum frame-
work (Baker, 2011) to compute the probability distribution
of SA at an arbitrary T1 conditioned on SA at T2. The condi-
tional spectral equations in Baker (2011) are for a single con-
ditioning period and are equivalent to equations (8) and (9).
Therefore, equations (5) and (6) are the generalization of this
approach to accommodate multiple conditioning periods, as
employed by Kishida (2017).

Figure 1 is a synthetic example using the Chiou and
Youngs (2014) GMM for an M 7.2 earthquake and VS30

of 760 m=s. We use synthetic instrumental data at periods
of 0.3, 1.0, and 3.0 s. (The synthetic instrumental data were
produced for illustrative purposes only and are not drawn
from any specific model or distribution.) This situation often
occurs with ShakeMap, in which SA data for these three peri-
ods are routinely supplied by seismic networks, but addi-
tional periods are desirable for loss modeling. Here, we
use the interperiod correlation model of Baker and Jayaram
(2008; see their fig. 4 for an illustration of the interperiod
correlation structure). The gray line in Figure 1 represents
the median values from the GMM, the dashed lines show
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the single-period conditioning for each individual instrumen-
tal data point, and the solid black line shows the multiple-
period conditioning result. This example demonstrates the
value of conditioning on multiple periods simultaneously, in
which the standard deviation of the estimate conditioned on
multiple periods is always less than the standard deviation of
the estimate conditioned on a single period (Fig. 1b). Figures
such as this can help assess the impact of incorporating
additional data at specific periods on the uncertainty of the
estimates at other periods. The GMM uncertainty is often a
function of input variables (i.e., it is heteroskedastic) and so
multiple figures with varying input values are required for
complete evaluation.

Spatial and Spectral Interpolation

Park et al. (2007), Stafford (2012), and Bradley (2014)
each applied the MVN to the spatial estimation of ground-
motion IMs. In general, GMMs define ground motion of the
ith IM at the mth site as

EQ-TARGET;temp:intralink-;df10;55;194IMi;m � μIMi;m
� ζi;m; �10�

in which IMi;m is the value of the ith IM at the mth site, and
μIMi;m

is the mean value given by the GMM and is a function
of the rupture and site parameters. For instrumental IMs,
IMi;m is the logarithm of the intensity measure, whereas no
transformation is required for MI. The total residual is
usually treated as a linear random-intercept mixed-effect
model ζi;m � δBi;m � δWi;m, in which the between-event
residual δBi;m is the event-specific random effect deviation

(i.e., the bias), and δWi;m is the remaining (within-event)
residual. δBi;m is zero mean with a standard deviation of τi;m
(i.e., the between-event standard deviation), and δWi;m is
zero mean with a standard deviation of ϕi;m (i.e., the
within-event standard deviation). To construct a ShakeMap
for an IM for which no data are available, we need to be able
to estimate the mean and variance of δBi;m for any IM from
data at other IMs.

Heteroskedasticity commonly enters GMMs through
dependencies of ϕ on magnitude, VS30, and distance, and
dependencies of τ on magnitude. Some GMMs additionally
include heteroskedasticity in τ that varies from site to site
with parameters such as VS30 and the amplitude of the
ground motion for reference rock conditions (Al Atik and
Abrahamson, 2010). Here, we modify the Jayaram and
Baker (2010) equations for the mean and variance of the bias
to include data from any period:

EQ-TARGET;temp:intralink-;df11;313;226μδBi;m
� ZT

i Σ−1
Y2Y2

ζ i
τ−2i;m � ZT

i Σ−1
Y2Y2

Zi
; and �11�

EQ-TARGET;temp:intralink-;df12;313;183σ2δBi;m
� 1

τ−2i;m � ZT
i Σ−1

Y2Y2
Zi

; �12�

in which τi;m is the τ corresponding to the ith IM and mth
site, and ΣY2Y2

is the covariance matrix of the within-event
residuals (i.e., �ΣY2Y2

�i;j � ρi;jϕiϕj). For a linear event-
specific bias, Zi is a column vector of ones (Jayaram and
Baker, 2010). But evaluating the random effect for all data
(at all IMs and locations) gives a single bias term across all

(a) (b)

Figure 1. (a) Response spectra including the ground-motion model (GMM), the observed values SA�T2�, the mean of the conditional
spectrum distribution for three example T2, and the mean of the conditional spectrum distribution for T2. (b) The standard deviations for the
response spectra curves on the left. SA, pseudoacceleration response spectra.
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IMs. Typically, IMs are analyzed separately, and thus each
IM has a different bias, and a single bias representative of
all IMs is less useful. We can compute an IM-specific bias
term by weighting the residuals (and Zi) by the correlation
between the IM of the observation and the target IM.

The variance of the within-event residual, accounting for
the uncertainty in the estimate of the between-event residual,
is thus

EQ-TARGET;temp:intralink-;df13;55;637σ2δWi;m
� ϕ2

i;m � σ2δBi;m
: �13�

To ease later calculations, let us further transform the within-
event residuals, normalizing by the total within-event
standard deviations:

EQ-TARGET;temp:intralink-;df14;55;565Xi;m ≡
δWi;m

σδWi;m

; �14�

thus ensuring Xi;m is standard normal.

Assumptions

The correlation structure for IMs of differing types at
differing locations can be reasonably assumed as Markovian
in nature, which can be expressed as

EQ-TARGET;temp:intralink-;df15;55;450ρXi;mXj;n
� ρXi;mXj;m

× ρXj;mXj;n
: �15�

That is, the correlation between differing IMs at differing
locations is the product of the cross correlation of IMs i
and j at the same location (ρXi;mXj;m

) and the spatial correla-
tion due to the distance between sitesm and n (ρXj;mXj;n

). This
is an approximation, but a reasonable one (Loth and Baker,
2010). This assumption implies a conditional independence
of the inter-IM correlation and the spatial correlation of a
given IM. This conditional independence will simplify some
of the calculations below, but it is not needed in general.
There is a slight nonuniqueness problem to this formulation,
because the second term in the equation could be either
ρXj;mXj;n

or ρXi;mXi;n
; that is, the spatial correlation could be

taken for either the ith or jth IM. Goda and Hong (2008)
use the larger of the two values, and Loth and Baker (2010)
find that choice to be more consistent with a full spatial
cross-correlation model. Direct spatial cross-correlation
models could also be used (e.g., Loth and Baker, 2010,
for PGA and SA), and the assumption of conditional inde-
pendence would then not be needed, though the convenience
of conditional independence would also be lost.

The covariance matrices must be positive definite. As
discussed by Loth and Baker (2010) and Bradley (2012), this
is not guaranteed for all possible correlation models. Loth
and Baker (2010) address this by selecting functional forms
that ensure the resulting covariance matrices are positive def-
inite. However, if one does encounter a non-positive-definite
covariance matrix, Bradley (2012) suggests using the method
by Higham (2002) to slightly modify the matrix to make it
positive definite before proceeding with further calculations.

Conditioning on Observations

Consider X (defined in equation 14) as the vector of all
normalizedwithin-event residuals of interest, which is composed
of N observed (X2) residuals (from N locations) and M pre-
dicted residuals (X1) for M locations, for P observed and Q
desired IMs, analogous to equation (1). This vector is standard
MVN. The mean vector for the nonobserved locations is

EQ-TARGET;temp:intralink-;df16;313;643μX1
�

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

μX1;1

μX1;2

..

.

μX1;M

μX2;1

μX2;2

..

.

μX2;M

..

.

μXQ;M

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

�

8><
>:
0

..

.

0

9>=
>;; �16�

which has QM elements. The μX2
vector is also zeros and is

constructed in a similar fashion as μX1
. However, not all

P-observed IMs are necessarily available at all N sites. For
the sake of this discussion, we define the number of elements
in μX2

as R.
The covariance matrix is a modification of ΣY1Y1

(given
in equation 3):

EQ-TARGET;temp:intralink-;df17;313;397 ΣX1X1

�MQ� × �MQ�
�

1 ρX1;2X2;1
… ρXQ;MXM;Q

ρX2;1X1;2
1 ..

.

..

. . .
.

ρXM;QXQ;M
… 1

2
666664

3
777775:

�17�
Note that ΣX2X2

is similarly constructed but has dimensions
R × R, whereas ΣX1X2

has dimensions �MQ� × R. The
means of the MQ predictions of X conditioned on the R
observations are given by a simplification of equation (5):

EQ-TARGET;temp:intralink-;df18;313;251 μX1jx2
�MQ�×1

� ΣX1X2

�MQ�×R
Σ−1
X2X2

R×R

 !
x2
R×1

: �18�

The conditional covariance matrix is

EQ-TARGET;temp:intralink-;df19;313;186 ΣX1X1jx1
�MQ�×�MQ�

� ΣX1X1

�MQ�×�MQ�
− ΣX1X2

�MQ�×R
Σ−1
X2X2

R×R

ΣX2X1

R×�MQ�
: �19�

To gain an intuitive understanding of the above equations, we
can consider the bivariate case, in which we observed
X2 � x2 and are interested in the conditional distribution
of X1. Equation (18) simplifies to

EQ-TARGET;temp:intralink-;df20;313;95μX1jx2 � ρX1X2
x2: �20�
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This is a simplification of equation (8), which is possible
because of the normalization in equation (14). From
equation (20), we see that the mean value of X1 is influenced
in proportion to ρX1X2

. For perfect correlation (ρX1X2
� 1), the

conditional mean of X1 will be equal to x2. For no correlation,
the conditional mean of X1 will be zero (i.e., the same as with
no observation of X2). Equation 19 simplifies to

EQ-TARGET;temp:intralink-;df21;55;405σ2X1jx2 � 1 − ρ2X1X2
: �21�

In this case, for perfect correlation, the conditional variance
will be 0, and for no correlation, the conditional variance will
be 1 (i.e., the same as with no observation of X2).

Once μX1jx2 and ΣX1X1jx2 are computed, they must be
scaled back into the appropriate natural IM variables, that
is, μIM1jim2

and ΣIM1IM1jim2
. First, we define three MQ

column vectors: μIM for the mean value of the IMs from the
GMM, μδB for the between-event residual, and μδW for the
within-event standard deviations. The ith element of each of
these vectors corresponds to the IM and location of the ith
element of X1. The conditional mean is then

EQ-TARGET;temp:intralink-;df22;55;237μIM1jim2
� μIM � μδB � σδW⊙μX1jx2 ; �22�

in which ⊙ represents the Hadamard (element-by-element)
product. The conditional covariance matrix is given by

EQ-TARGET;temp:intralink-;df23;55;179ΣIM1IM1jim2
� σδWσTδW⊙ΣX1X1jx2 : �23�

Numerical Example

The following provides numerical examples based on
the solution of equations (18) and (19), for slightly more real-
istic cases than the bivariate case above. MATLAB code pro-

ducing these calculations is available for review and testing
of other cases (see Data and Resources).

For these results, consider the following inputs: there are
two IMs with ρX1;mX2;m

� 0:6. For a given IM, the spatial cor-
relation of residuals is given by

EQ-TARGET;temp:intralink-;df24;313;419ρX1;mX1;n
� exp�−h=10�; �24�

in which h is the separation distance between the two sites, in
units of kilometers. Using these two formulas, the covariance
matrix for all locations of interest can be computed. (The
correlation formulas themselves were chosen to be illustra-
tive and do not represent any particular real-world model.)

Figure 2 shows example results to indicate the effect of
these correlations. There are two observed values of X1;m in
this case. This numerical example is representative of the prac-
tical situation in which X1;m is MI at sitesm, and X2;m is PGA
at sites m, in which MI is taken from the online DYFI reports,
but no instrumental data are available. We see that X1;m passes
through the observed values and decays toward X � 0, away
from the observations. The�1σ values for X1;m pinch near the
observations and broaden at other locations where the corre-
lation is weaker. X2;m follows similar trends, though both the
mean and σ are less affected by the observations, given the
reduction in correlation across different IMs.

A second example is shown in Figure 3. In this case, a
single observation of each IM type is shown, and the obser-
vations are opposite in sign from each other. We see that at
location values between 4 and 10 km, both IMs interpolate
between the observations in a relatively smooth manner. For
X1;m values with location > 10 km, and X2;m values with
location < 4 km, the conditional mean values are very close
to zero, indicating the offsetting impacts of the two condi-
tioning data points in those circumstances.

0 5 10 15 20

Location (km)

-2

0

2
X

1,
m

0 5 10 15 20

Location (km)

-2

0

2

X
2,

m

Figure 2. Example conditional ground-motion fields. Circles
show observed values, solid lines show conditional mean values,
and dashed lines show conditional mean �1σ values. Dotted lines
at X � 0 indicate the original mean value before conditioning.
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Figure 3. A second example of conditional ground-motion
fields. Circles show observed values, solid lines show conditional
mean values, and dashed lines show conditional mean �σ values.
Dotted lines at X � 0 indicate the original mean value before con-
ditioning.
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These two simple examples indicate that the condition-
ing scheme above produces intuitive results. The above
mathematical formulations can easily be extended to 2D
coordinate geometries and to more than two IM types. The
simplifications of the examples were simply to ease the setup
and plotting.

Accommodating Uncertain Measurements

The general MVN equations given earlier (i.e., equa-
tions 5 and 6) do not explicitly accommodate noisy or
uncertain observations. It is not always the case, however,
that the observations are known precisely. Frequently, the
observed ground motions upon which we wish to condition
our result have nonzero uncertainty, characterized by a mean
and standard deviation. To accommodate a noisy observation
(Z) we assume that its distribution with respect to the
modeled value of the quantity Y2 is given by

EQ-TARGET;temp:intralink-;df25;55;521Z � Y2 � ϵ; �25�
in which ϵ is an error term with zero mean and standard
deviation σϵ. This definition implicitly assumes an unbiased
model. Such an assumption could be violated if, for instance,
a model was used outside the geographic region for which it
was developed. The problem then becomes one of how to
unbias the model, which is beyond the scope of this article.
Given the noise model in equation (25), and assuming Y2 and
ϵ are independent, propagation of uncertainty results in

EQ-TARGET;temp:intralink-;df26;55;396μZ � μY2
; and �26�

EQ-TARGET;temp:intralink-;df27;55;362σ2Z � σ2Y2
� σ2ϵ : �27�

Substituting Z for Y2, in equation (8), the bivariate mean can
be written as

EQ-TARGET;temp:intralink-;df28;55;303μY1jz � μY1
� σY1

σZ
ρY1Z�z − μZ� �28�

EQ-TARGET;temp:intralink-;df29;55;261 � μY1
� σY1

σY2

σY2
σZ

σ2Z
ρY1Z�z − μZ�: �29�

Substituting equations (26) and (27) gives

EQ-TARGET;temp:intralink-;df30;55;207μY1jz � μY1
� σY1

σY2

σY2

������������������
σ2Y2

� σ2ϵ
q
σ2Y2

� σ2ϵ
ρY1Z�z − μY2

� �30�

EQ-TARGET;temp:intralink-;df31;55;158� μY1
� σY1

σY2

σY2������������������
σ2Y2

� σ2ϵ
q ρY1Z�z − μY2

�: �31�

This leads to the definition of an adjustment factor

EQ-TARGET;temp:intralink-;df32;313;733ω �
������������������

σ2Y2

σ2Y2
� σ2ϵ

s
; �32�

which gives

EQ-TARGET;temp:intralink-;df33;313;679μY1jz � μY1
� σY1

σY2

ωρY1Z�z − μY2
�: �33�

By definition

EQ-TARGET;temp:intralink-;df34;313;632ρY1Z � cov�Y1; Z�
σY1

σZ
; �34�

substituting equations (25) and (27) and then simplifying
gives

EQ-TARGET;temp:intralink-;df35;313;571ρY1Z � cov�Y1; Y2 � ϵ�
σY1

������������������
σ2Y2

� σ2ϵ
q �35�

EQ-TARGET;temp:intralink-;df36;313;528 � cov�Y1; Y2� � cov�Y1; ϵ�
σY1

������������������
σ2Y2

� σ2ϵ
q : �36�

But because Y1 and ϵ are assumed to be uncorrelated,
cov�Y1; ϵ� � 0. That gives

EQ-TARGET;temp:intralink-;df37;313;453ρY1Z � cov�Y1; Y2�
σY1

������������������
σ2Y2

� σ2ϵ
q �37�

EQ-TARGET;temp:intralink-;df38;313;404 � σY2������������������
σ2Y2

� σ2ϵ
q cov�Y1; Y2�

σY1
σY2

�38�

EQ-TARGET;temp:intralink-;df39;313;374� ωρY1Y2
: �39�

Thus, the mean and variance of the bivariate normal distri-
bution with noise can be written as

EQ-TARGET;temp:intralink-;df40;313;323μY1jz � μY1
� σY1

σY2

ω2ρY1Y2
�z − μY2

�; and �40�

EQ-TARGET;temp:intralink-;df41;313;289σ2Y1jy2 � �1 − ω2ρ2Y1Y2
�σ2Y1

; �41�
which reduce to the familiar equations (8) and (9)
when σϵ � 0.

To gain some intuitive understanding of these equations,
we consider the bivariate case in which the observation is at
the site we wish to estimate, so μY1

� μY2
� μ, σY1

�
σY2

� σ, and ρY1Y2
� 1. Equations (40) and (41) reduce to

EQ-TARGET;temp:intralink-;df42;313;186μjz � μ� σ2

σ2 � σ2ϵ
�z − μ�; and �42�

EQ-TARGET;temp:intralink-;df43;313;150σ2jz � σ2σ2ϵ
σ2 � σ2ϵ

: �43�

This formulation of the mean and variance (i.e., equations 42
and 43) has a number of desirable features listed below and
illustrated in Figure 4.
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1. When σϵ is zero (indicating a precise observation z), then
equation (42) reduces to μjz � z. Similarly, equation (43)
becomes σ2jz � 0, confirming our precise knowledge of z.

2. When σϵ → ∞ (i.e., an extremely unreliable observation),
equation (42) reduces to μjz � μ. Equation (43) becomes
(in the limit) σ2jz � σ2. Thus, very unreliable observa-
tions have minimal impact on our initial estimates.

3. When σϵ � σ, the observation and estimate are given
equal weight and equation (42) becomes μjz � �μ� z�=2.

4. Equation (43) is symmetric in σ and σϵ, as one would
expect, given the interchangeability of the estimate and
the observation when both are distributions.

5. From equation (43), σjz is always less than the lesser of σ
and σϵ, validating our intuition that an observation, even a
noisy one, will improve our knowledge of the variable in
question.

This result depends upon the independence of the
additional uncertainty σϵ and the correlation expressed
through ρ. Thus, this formulation is less applicable when σϵ
stems from spatial variability than when it emerges from in-
strumental or processing uncertainty, for example. It may be
possible to construct a model that better accommodates
spatial uncertainty, but it would likely need to include that
uncertainty more organically in the correlation model itself.
This is analogous to eliminating the Markovian assumption
of a compound correlation function (as discussed earlier) by
directly modeling spatial cross correlations.

Generalizing equations (40) and (41) to the multivariate
case requires generating a matrix of adjustment factors. An ω
can be computed for each element in our random variable
(equation 1):

EQ-TARGET;temp:intralink-;df44;313;450ωYi
�

����������������������
σ2Yi

σ2Yi
� σ2ϵ;Yi

s
; �44�

in which σ2ϵ;Yi
is the variance of the observation at Yi, giving

EQ-TARGET;temp:intralink-;df45;313;407ω �
8<
:
ωY1

��
ωY2

9=
; �

8<
:

JY1

��
ωY2

9=
;; �45�

in which JY1
is a vector of ones the same length as Y1. The

matrix of adjustment factors is then:

EQ-TARGET;temp:intralink-;df46;313;336Ω � ωωT �
ΩY1Y1

j ΩY1Y2

�� �� ��
ΩY2Y1

j ΩY2Y2

2
4

3
5; �46�

in which the diagonal elements Ωi;i should be set to 1 be-
cause the elements are perfectly correlated with themselves.
We can then generate a modified covariance matrix Σ′ by
multiplication of the original covariance matrix Σ with the
adjustment factors:

EQ-TARGET;temp:intralink-;df47;313;232Σ′ �
Σ′

Y1Y1
j Σ′

Y1Y2�� �� ��
Σ′

Y2Y1
j Σ′

Y2Y2

2
4

3
5 � Ω⊙Σ: �47�

The ground-motion residuals are also weighted by the
corresponding adjustment factor

EQ-TARGET;temp:intralink-;df48;313;162ζ ′ � ωY2
⊙ζ: �48�

Then, equations (5) and (6) become

EQ-TARGET;temp:intralink-;df49;313;128μY1jy2 � μY1
� Σ′

Y1Y2
Σ′−1
Y2Y2

ζ ′; and �49�

EQ-TARGET;temp:intralink-;df50;313;103ΣY1Y1jy2 � ΣY1Y1
− Σ′

Y1Y2
Σ′−1
Y2Y2

Σ′

Y2Y1
: �50�

Figure 4. Illustration of the effects of σϵ. (a) Plot of μY1jz as a function of σϵ for a range of assumed values of z from −1 to 1, assuming
μY2

� 0 and σ2Y2
� 1. (b) Plot of σY1jz as a function of σϵ for a range of assumed values of σ2Y2

from 0.1 to 10. The dashed gray line in (b) is for
σY1jz � σϵ.
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Note that ΩY1Y1
is all ones, and therefore does not

modify ΣY1Y1
.

Figure 5 illustrates a 1D synthetic example of the condi-
tional multivariate process in which some of the observations
have additional uncertainty. Figure 5a shows predicted
amplitudes, and Figure 5b shows their standard deviations.
The GMM estimates are shown as a dashed black line
(μY1

� −1; σY1
� 0:6), whereas the conditional MVN distri-

bution mean (μY1jy2 ) and standard deviation (σY1jy2 ) are rep-
resented by the solid black lines. The markers indicate the
location of station data: circles are stations with no additional
uncertainty (σϵ � 0), and diamonds have additional uncer-
tainty (σϵ � 0:5). Both the circles and diamonds represent
stations that are collocated with points in the output grid.
The triangles represent stations that do not have additional
uncertainty but that are located halfway between output
points (1 km spacing); in this case, the predicted values do
not match the observations because the locations are not the
same. In Figure 5a, the markers indicate the observed ampli-

tudes (y2), and in Figure 5b they indicate the amount of addi-
tional uncertainty (σϵ). The spatial correlation model used
was that of Goda and Atkinson (2010).

The Ⓔ electronic supplement to this article includes a
Python program, similar to that which produced Figure 5,
demonstrating the evaluation of the MVN with additional
uncertainty.

Discussion

Gehl et al. (2017) propose a method for conditioning
ground-motion estimates on observations using Bayesian
networks (BNs). The BN approach addresses many of the
important issues that we address with the MVN. Gehl et al.
(2017) compare the BN with an implementation of the MVN,
but that MVN implementation is different from ours, high-
lighting the importance of the details of the MVN calcula-
tion. The difference between the MVN implementations is
particularly evident in the standard deviations given in fig-
ure 5 of Gehl et al. (2017). At the location of an observation,

Figure 5. A 1D synthetic example of the multivariate normal (MVN) with additional uncertainty. (a) Ground motion ln�PGA� as a
function of position. (b) Uncertainty (standard deviation) as a function of position. See the Accommodating Uncertain Measurements section
for a discussion. PGA, peak ground acceleration.
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where the within-event conditional covariance is zero, Gehl
et al. (2017) add the between-event standard deviation (τ),
resulting in the standard deviation of the conditional mean
at an observation becoming equal to τ. In contrast, we use
σδWi;m

(equation 13) in the normalization of X (equation 14),
which allows for the conditional variance (σ2X1jx2 ) to exhibit
the following characteristics:

• σ2X1jx2 is τ2 � ϕ2 in the absence of data;
• σ2X1jx2 approaches zero as the prediction location ap-
proaches the observation location;

• σ2X1jx2 approaches ϕ2 at locations distant to observations,
for events with enough observation that the variance of
the event term (σ2δBi;m

) approaches zero; and
• for situations intermediate to the above end members,
σ2X1jx2 exhibits a smooth transition in terms of both the
observation-prediction distance and the total number of
observations.

These trends are consistent with the BN results demonstrated
by Gehl et al. (2017) in their figure 5, except that the figure
does not address the dependence of σ2X1jx2 on the number of
observations. Other limitations of the MVN identified by Gehl
et al. (2017), such as the inclusion of multiple IMs and macro-
seismic data, are exactly the limitations that we addressed in
this article. Gehl et al. (2017) also raise the issue of including
epistemic uncertainty; in our opinion, this can be handled in
either approach, for example, by combining multiple GMMs
into a single model that reflects the variability in the means
and standard deviations of the individual GMMs.

We note that for computer memory or performance rea-
sons, the computation of the conditional mean for the differ-
ent IMs can proceed completely independently of one
another with no loss of information. That is, one could divide
the vector μX1

(equation 16) into any number of subsets, re-
vise the mean and covariance matrices accordingly, and com-
pute the components of μX1jx2 sequentially or in parallel. The
diagonal elements of the conditional covariance matrix (the
variances) may also be calculated piecemeal. The full formu-
lation is required only if the off-diagonal elements of the con-
ditional covariance matrix are needed.

The MVN approach outlined here is appropriate for pro-
ducing interpolated values at specific geographic points. If an
areal average is required (e.g., for modeling the losses of ag-
gregate inventories), then the method discussed by Stafford
(2012), which revises the variances and covariances to ac-
count for the spatial averaging of the ground motions,
may be required.

Summary and Conclusions

In situations where certain IMs are available at a set of
sites, the MVN may be applied to estimate additional IMs
and IMs at other sites. This approach requires the availability
of a GMM, a cross-correlation model among the IMs in ques-
tion, and the assumption that the IM residuals (relative to the
GMM) have an MVN distribution. If some IMs are available

and others are desired at the same locations, then it is suffi-
cient to estimate the additional IMs from GMM and an inter-
period correlation model such as Baker and Jayaram (2008).
Analogously, given a GMM and a spatial correlation model
such as Goda and Atkinson (2010), a specific IM may be
estimated at geographic locations remote from the observa-
tion sites. More generally, with a cross-correlation model
such as Loth and Baker (2010), one may use the MVN to
estimate ground-motion distributions for a variety of IMs
and locations, using a mixture of observed IMs.

These techniques may also be applied to other IMs with
normal or lognormal distributions, such as significant dura-
tion, Arias intensity, and cumulative average velocity. This
is, however, not possible at this time because the necessary
spatial cross-correlation relations have not yet been devel-
oped. Other parameters, such as the time-averaged shear-
wave velocity to 30 m depth (i.e., VS30), may also be inter-
polated by these techniques, though we have not investigated
those applications here.

The MVN, as typically presented, treats the conditioning
observations as exact (the variance goes to 0 as the correlation
approaches unity). It is often the case, however, that our ob-
servations have significant levels of uncertainty. For example,
MI observations represent an areal average compiled from a
number of damage reports. Also, new types of mass-deployed
seismic instruments (e.g., Cochran et al., 2009; Evans et al.,
2014; Clayton et al., 2015) may provide accurate information
in aggregate but will represent samples of a distribution when
treated individually. One may also imagine other sources of
noise, found either in the acquisition or processing of seismic
data, that add uncertainty to the observations (uncertainty in
the orientation or location of sensors, for instance). We envi-
sion that this method of interpolation could be useful for other
variables, such as VS30, in which different survey methods are
associated with different levels of precision, and in extreme
cases,VS30 could be converted from indirect information, such
as standard penetration-test blow counts. An analogous exam-
ple is the conversion between MI and SA (Worden et al.,
2012). An alternative to converting one variable to another and
accounting for the uncertainty of the conversion is to develop
the relevant cross correlation models. These are, however,
frequently unavailable, and so it is useful to maintain the flex-
ibility to employ both approaches. The techniques presented
here allow for the incorporation of these noisy data into the
conditional MVN.

Data and Resources

No data were used in this article. The MATLAB code for
constructing Figures 2 and 3 is available at https://github.
com/bakerjw/ground‑motion‑interpolation (last accessed
July 2017).
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