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Abstract

The reliability of water supply networks subjected to catastrophic events is a crucial concern to communities,
but our ability to assess these systems is limited by their size and complexity. This paper proposes a
statistical learning technique, Random Forests, to efficiently estimate network performance in place of direct
physical simulation. This technique uses a set of explanatory metrics that describe the impact of seismic
damage to network behavior. The approach is applied to a case study network, the Auxiliary Water Supply
System of San Francisco. The resulting statistical model is shown to replicate network performance estimates
from flow-based hydraulic simulation, and to provide good performance in identifying components to retrofit
to improve the reliability of the system. The favorable performance and computational advantages of this
approach make it an attractive tool for infrastructure reliability and risk mitigation analyses.

1. Introduction

The reliability and resilience of water supply networks have received much attention due to their vulner-
ability in extreme events but criticality to community recovery. These networks are complex, and system
reliability assessment, while considering a range of possible future disruptive events, is thus computationally
challenging.

The reliability of water supply networks may be rigorously evaluated using hydraulic simulation, which
estimates the available head, pressure, and flow in the network given a particular (or disrupted) state of
the network [e.g. 1, 2, 3, 4, 5], while the resilience of water supply networks may be characterized using a
time-varying analysis of the recovery of the network from its disrupted state [e.g. 6, 7, 8, 9, 10, 11]. However,
these analytical methods become exceedingly difficult for large networks [12, 13]. Disruptive events further
complicate the analysis, as effective network optimization and intervention actions require consideration of
a range of disruptive events [8, 14]. Some studies deal with this complexity by focusing on small networks,
or using a topological model to assess network performance [e.g. 15, 16, 17, 18], correlating topological
properties with reliability and resilience measures [e.g. 19, 20, 3], or formulating a more easily calculable
heuristic for reliability and resilience [e.g. 21, 22, 23, 24]. The above strategies have limitations due to the
omission of the physical properties and dynamics of the network [12, 6, 25, 26], and so some recent studies aim
to incorporate such properties [12, 25, 13]. Rapidly assessing the network performance while considering
the network’s physical attributes has two benefits: identifying intervention actions (e.g. retrofitting) to
mitigate impacts from potential future disruptive events, and rapidly developing a repair strategy following
a disruptive event.

Data-driven analysis has the potential to address the above challenges. Guikema [27] and Perrin [28]
discuss the application of statistical learning models to network reliability problems. Han et al. [29] estimate
the spatial distribution of power outages during hurricanes with generalized linear models and principal
component analysis that use various properties of the landscape, power network components, and hurricane
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as explanatory variables. Rokneddin et al. [30] apply Random Forests and Support Vector Machines to
estimate the reliability of bridge networks using bridge failure probabilities as predictor variables. Robles-
Velasco et al. [31] apply logistic regression and support vector classification to predict pipe failures.

This paper utilizes Random Forests to predict water supply network reliability subjected to earthquakes.
The Random Forest model is trained to predict hydraulic network performance, given the damaged state
of the network. One key aspect of statistical learning is that the chosen input parameters must sufficiently
predict network performance and be easily calculable for large networks. Thus, this work explores the use of
a small set of explanatory metrics that reflect the impact of network topology and conveyance of resources
due to the damage inflicted by the earthquake. Candidate explanatory metrics may be found in operations
research literature regarding the characterization of infrastructure networks [e.g. 32, 33, 34, 35]. Additional
metrics aiming to capture the hydraulic impacts of damaged components are formulated in this work to
supplement existing metrics from literature. The trained Random Forest model is then utilized to assess
the reliability of a case study network and assess the efficacy of identified retrofit strategies in improving its
reliability.

This paper is organized as follows. Section 2 describes the Random Forest methodology. Section 3
discusses explanatory metrics and compiles the set of predictor variables to be used for model construction.
Section 4 analyzes the predictive power of the Random Forest models by comparing the predictions with those
estimated using hydraulic simulation, and evaluates the impact of training data size. Section 5 evaluates
the use of the models for retrofit selection. Section 6 concludes by summarizing the findings of this paper
and discussing directions for future research.

2. Network Performance Estimation

2.1. Random Forests

The Random Forest is an ensemble statistical learning method that aggregates a large number of decision
trees constructed using bootstrap samples [36]. It is a variant of the tree bagging procedure, in which each
tree is grown using its own bootstrap samples as well as a random subset of the predictor variables for
training in order to de-correlate trees [37]. The main steps for constructing a Random Forest model are as
follows:

1. Compile bootstrap samples from the pool of training data points.

2. Randomly select a subset of predictor variables to be used to construct the tree.

3. Select the predictor variables from the chosen subset to be associated with nodes in the tree, starting
with the top node.

4. Recursively split nodes in the tree and distribute the bootstrap samples from that node according
to the predictor variable associated with that node, until the minimum number of data samples is
achieved at each node.

5. Repeat the above steps a large number of times and aggregate.

Other statistical learning techniques considered in this study were linear regression methods such as
Lasso, Support Vector Machine Regression, and Neural Networks. The Random Forest methodology was
selected for its ease of implementation, minimal tuning requirements, and speed of model construction and
evaluation. Trees are also able to capture complex interactions in the predictor variables and have relatively
low bias [e.g. 36, 30, 38].

In this work, each tree is constructed using a randomly selected subset of the predictor variables composed
of one-third of the total number of predicted variables and a bootstrapped sample equal to the total number
of training data points. Each split (leaf) in the tree incorporates a minimum of five data samples. These
values for the hyperparameters of the Random Forest models are the suggested values found in [39, 37]
Each Random Forest model grows a maximum of 500 regression trees. This work uses the Random Forest
implementation in the Statistics Toolbox of Matlab, named the Treebagger class [39].

The Random Forest can estimate the relative importance of its predictor variables using out-of-bag
permuted variable delta error (OOBPVDE) [39]. For each regression tree, there are “out-of-bag samples”
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omitted from training. For each tree grown in the model, the value of a particular predictor variable is
randomly permuted using the values in the out-of-bag samples, and the resulting prediction error is recorded.
The increase in prediction error is averaged over all trees and divided by the standard deviation across the
entire ensemble. This value, the OOBPVDE associated with that variable, describes its contribution to the
predictive power of the model. A higher OOBPVDE indicates higher relative importance.

2.2. Example network

To illustrate the Random Forest strategy, the Auxiliary Water Supply System (AWSS) of San Francisco
is used as an example network. This high-pressure network provides water for firefighting, and has been the
subject of many past studies [e.g. 40, 41]. Additionally, a major retrofit project is underway to improve its
seismic reliability [42]. The AWSS model is composed of 6,261 nodes, including two tanks, one reservoir, and
two pump stations, and 6,307 pipe segments spanning 205 kilometers, as shown in Figure 1. Topologically,
the northeast portion of the network is relatively dense, with high redundancy of pipelines, whereas the
southern and western part of the network is relatively sparse. Hydraulically, the northeast portion of the
network has a higher number of nodes requiring water and higher quantity of water demanded. The AWSS
functions independently from other networks, thereby minimizing network interdependency effects on its
performance.

To analyze this network, a comprehensive set of earthquake scenarios, with incremental magnitudes,
rupture distances, locations, etc., is generated from [43], and peak ground velocities for each scenario are
calculated using the Boore and Atkinson [44] ground motion model according to methods described by [2, 45].
1,820 ground motion realizations are generated from these methods, each with an associated probability of
occurrence to maintain the hazard consistency. This set of ground motion realizations is combined with pipe
damage probabilities from Jeon and O’Rourke [46] to produce realizations of pipe damage in the network.
For simplicity, nodes are not susceptible to damage in this work. The damaged networks are subjected to
nodal demands for firefighting water, as documented in [47]. To facilitate computation, pipelines are serially
aggregated in the model: pipe segments in series are modeled as a single pipeline, resulting in a smaller
network that contains no nodes connected to exactly two pipe segments.

2.3. Network performance estimation

The performance of the network is calculated using hydraulic flow simulation [48, 49], and quantified by
the nodal unsatisfaction. Nodal unsatisfaction is defined to be the proportion of nodes in the network that
do not have their water demands satisfied. This is a continuous variable that takes a value of 0 when no
nodes have demands satisfied and 1 when all are satisfied. This nodal unsatisfaction is calculated for each
of the previously described 1,820 simulations.

These simulations are used to train the Random Forest model to predict nodal unsatisfaction, and a
second set of simulations are used to evaluate the prediction error of the resulting model. This paper
explores the use of two different sets of predictor variables to evaluate their efficacy in prediction:

The first approach is to use the set of damaged components as predictor variables for the Random Forest,
denoted here as the Näıve strategy. This strategy directly links the performance of network components to
the performance of the network, and, with sufficient training and refinement of the model, would abstract
away the complexities of network operation. For the AWSS, there are 6,307 pipe segments, and thus 6,307
predictor variables for this strategy. Each variable may take an integer value of 0 or 1, indicating no damage
or damage, respectively. One issue with the Näıve strategy is the large parameter space of the predictor
variables. If the amount of training data is small relative to the parameter space, then the resulting model
may not adequately accommodate possible future observations. Additionally, when there are a large number
of predictor variables, but a relatively small number of important or relevant variables, those variables are
less likely to be chosen to construct each tree, resulting in a poorly performing Random Forest model [36].
As the Näıve strategy uses the network component states as the predictor variables, a large proportion of
components may have a relatively small impact on network performance, especially for large networks.

The second approach is to first translate the network component states into a smaller set of explanatory
network metrics, which summarize the impact of damage to the network. This smaller set of metrics are then

3



Wu, J., and Baker, J. W. (2020). “Statistical Learning Techniques for the Estimation of Lifeline Network
Performance and Retrofit Selection.” Reliability Engineering & System Safety, 200, 106921.

Figure 1: Major components of the Auxiliary Water Supply System in San Francisco.
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used as the predictor variables for Random Forest training and forward prediction. This method reduces
the parameter space of the predictor variables and provides predictor variables that are more strongly linked
with network performance. This method is denoted here as the Metric strategy. The next section discusses
the explanatory metrics for the Metric strategy.

3. Candidate Explanatory Metrics

This section discusses the considered explanatory metrics. Some of the metrics are popular in the
network literature, and others were formulated here based on domain-specific features of water networks.
The importance of each variable is assesed, and a method proposed to optimize the set of predictors used
for statistical learning.

3.1. Metric Definitions

The 23 explanatory metrics utilized in this paper contribute 49 predictor variables to train the Random
Forest model, and are summarized in Table 1. The Random Forest model constructed using these 49
predictor variables is denoted as the Full Set and used for comparative purposes later in this paper. The
following subsections define the three metrics that are determined in the analysis below to be most useful.
The remaining metrics are defined in the electronic supplement.

3.1.1. Spectral Radius

The spectral radius, denoted r, is a spectral measure conceived to capture the robustness of networks
against the spread of viruses [32], and describes the interconnectivity between nodes. The spectral radius is
calculated as follows.

r = max
1≤i≤N

|λi| (1)

where λi is the ith eigenvalue of the adjacency matrix A. For the AWSS, this metric’s value varies between
3.12 and 3.38 across the data points.

3.1.2. Proportion of Affected Tiers

The proportion of affected tiers, denoted pat, is an experimental topological measure formulated in this
paper. It is defined as the proportion of links that are downstream of damaged links according to topological
sort. This is computed by finding the damaged link with the highest tier from each source node, extracting
the sets of links with lower tiers than that damaged link, and amalgamating these sets across all source
nodes. This metric aims to capture the impact of damaged links on the distribution of flow. It is calculated
as follows.

pat =

!!"
i∈S lowerilink

!!
m

(2)

where S is the set of all source nodes, lowerilink indicates the set of all links downstream from damaged links
according to a topological sort from source node i, m is the number of links in the network, and |•| describes
the cardinality of the set •. A value of 0 indicates that there are no damaged pipes or the damaged pipe
is the lowest tier from all reachable sources, and a value of 1 indicates that all pipes connected to source
nodes are damaged. For the AWSS, this metric varies between 0 and 0.724 across the data points.
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Figure 2: Mean squared error (MSE) of models constructed using a subset of the most important explanatory variables,
described by the solid blue line. These values are compared to the mean squared error of the model using all variables,
indicated by the dashed red line.

3.1.3. Critical Fraction

The critical fraction, denoted fc, is a topological measure that describes the theoretical value for the
proportion of nodes which need to be removed to completely destroy the largest cluster in a network [50].
It is calculated as follows.

fc = 1− 1
〈k2

i 〉i
〈ki〉i − 1

(3)

where ki is the degree of node i and 〈•〉i denotes the averaging of the values • over all nodes i. For the
AWSS, the serial aggregated network is used to facilitate the calculation of this metric. This metric varies
between 0.472 and 0.508 across the AWSS data points.

3.2. Importance of Predictor Variables

The importance of each variable may be estimated by observing its out-of-bag permuted variable delta
error (OOBPVDE) [39]. An initial Random Forest model is constructed using 1,820 training data points,
and the OOBPVDE is calculated using the resulting model. Table 1 provides the importance ranking of the
predictor variables using OOBPVDE.

Using this importance ranking, an incremental analysis is performed. First, a Random Forest is con-
structed with only the most important variable, and its prediction error is evaluated. Subsequent models
incrementally add the next most important variable to the predictor set. Figure 2 shows the mean squared
prediction error (MSE) on a test data set for each of these incremental models, compared to the prediction
error of a model that uses all predictor variables.

MSE = 〈
#
xj − x′

j

$2〉j (4)

where xj is the true value of the nodal unsatisfaction for data point j, x′
j is the predicted value for the

nodal unsatisfaction for data point j, and 〈•〉j denotes the average of the quantities • for all data points j.
Further explanation of the test data set will be presented in Section 4

Observing Figure 2, the three most important predictor variables (spectral radius, proportion of affected
tiers, and critical fraction) provide predictive power comparable to the full set of variables. Spectral radius
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and critical fraction quantify the interconnectivity between nodes (i.e. redundancy of water flow paths),
while the proportion of affected tiers quantifies the number of flow paths impacted by damage. Thus, these
metrics indicate that path redundancy (or the loss thereof) is closely associated with nodal unsatisfaction.
A Random Forest model using these three predictor variables, termed the Optimized Set, is evaluated
further below. While other effective combinations of predictor variables may exist, Figure 2 indicates that
improvements to predictive power would be minimal.

Table 1: Predictor variables from the explanatory metrics explored in this work.

Variable Name Symbol Importance
Ranking

Average Degree k̄ 11
Meshedness Coefficient α 14
Link Density (Network Density) ρ 10
Critical Fraction fc 3
Closeness (source 1) C1 29
Closeness (source 2) C2 33
Closeness (source 3) C3 31
Closeness (source 4) C4 23
Closeness (source 5) C5 19
Closeness (source 6) C6 28
Closeness (source 7) C7 24
Directed Closeness (source 1) CD

1 9
Directed Closeness (source 2) CD

2 46
Directed Closeness (source 3) CD

3 44
Directed Closeness (source 4) CD

4 36
Directed Closeness (source 5) CD

5 42
Directed Closeness (source 6) CD

6 45
Directed Closeness (source 7) CD

7 47
Average Shortest Path Length (source 1) L1 30
Average Shortest Path Length (source 2) L2 34
Average Shortest Path Length (source 3) L3 22
Average Shortest Path Length (source 4) L4 26
Average Shortest Path Length (source 5) L5 18
Average Shortest Path Length (source 6) L6 27
Average Shortest Path Length (source 7) L7 32
Directed Average Shortest Path Length (source 1) LD

1 13
Directed Average Shortest Path Length (source 2) LD

2 48
Directed Average Shortest Path Length (source 3) LD

3 41
Directed Average Shortest Path Length (source 4) LD

4 35
Directed Average Shortest Path Length (source 5) LD

5 40
Directed Average Shortest Path Length (source 6) LD

6 43
Directed Average Shortest Path Length (source 7) LD

7 49
Algebraic Connectivity µn−1 20
Spectral Gap ∆ 15
Spectral Radius r 1
Connectivity Loss CL 39
Reachability Loss RL 37
Redirection rd 38
Flow Loss Score (Shortest Path) flsSP 7
Flow Loss Score (Betweenness) flsB 21
Flow Loss Score (Topological Sort) flsTS 17
Proportion of Affected Tiers pat 2
Average Proportion of Affected Demand apad 4

Continued on next page
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Table 1 – continued from previous page

Variable Name Symbol Importance
Ranking

Overall Proportion of Affected Demand (Top. Sort) opadTS 16
Path Reduction pr 25
Weighted Path Reduction (Upstream Flow) wprUF 12
Weighted Path Reduction (Downstream Links) wprDL 6
Weighted Path Reduction (Downstream Demand) wprDD 5
Overall Proportion of Affected Demand (DirectedPaths) opadDP 8

4. Predictive Power of Random Forest Models

This section assesses the predictive power of the developed Random Forest models. The first subsection
discusses the predictive power of the three primary considered models. Each of these models are trained with
1,820 data points generated as described in Section 2.2 and tested with a second set of 1,820 realizations,
referred to henceforth as the test data. The second subsection studies the predictive power of the Random
Forest models as a function of the amount of training data used.

4.1. Performance of Primary Random Forest Models

Figure 3 shows scatter plots of 1,820 data points from the test data describing the relationship between
the predicted nodal unsatisfaction versus the true value, colored based on point density. Blue points signify
a sparse concentration of points in the vicinity, while red point signify a dense concentration. The solid
line indicates the values at which the predicted and true values are equal. The three subfigures depict the
results for the Näıve strategy, Metric strategy with the Full Set of variables, and Metric strategy with the
Optimized Set of variables.

In Figure 3a, predicted values vary between 0.35 and 0.8, resulting in a large disparity between the
true and predicted values in the dense regions where the true value is around 0.2 and 1.0. This reflects
the difficulty that Random Forest models have in extrapolating. Due to the large parameter space, it is
nearly certain that the test data contain pipe damage combinations that were not observed in the training
data, and with this model parameterization the Random Forest struggles to make predictions in such cases.
Nevertheless, there is some correlation between the true and predicted values.

In Figure 3b, there is a stronger correlation between the predicted and true values as compared to the
Näıve strategy. There is a dense region near the red line around the value of 0.2 and 0.7. The model
underestimates nodal unsatisfaction when the true value is near 1.0, though to a lesser degree than the
Näıve strategy. Figure 3c closely resembles that of Figure 3b. Thus, for this network, the Optimized Set of
variables can efficiently predict response.

To supplement Figure 3, the predictive power is quantitatively evaluated by calculating the mean squared
error (MSE) and mean absolute error (MAE) of the predictions on the test data, where MSE was defined
above in Equation 4 and MAE is defined as

MAE = 〈
!!xj − x′

j

!!〉j (5)

where |•| denotes an absolute value and other variables are as defined in Equation 4.
For the Näıve strategy, Metric strategy with Full Set, and Metric strategy with Optimized Set, the MSE

over all data points is 0.0343, 0.0260, and 0.0266, respectively, and the MAE over all data points is 0.1523,
0.1248, and 0.1251, respectively. Thus, there is a perceivable disparity in overall predictive power between
the Näıve strategy and Metric strategies, while the Optimized Set nearly replicates the power of the Full
Set.

The MSE and MAE values for bins of true values are shown in Figure 4. The Näıve model performs
relatively poorly for nodal unsatisfaction values below 0.3 and above 0.7, which is consistent with the
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(a) (b)

(c)

Figure 3: Scatter plots depicting the true nodal unsatisfaction from the hydraulic model versus the predicted nodal unsatisfac-
tion from the Random Forest model following (a) the Näıve strategy, (b) the Metric strategy, with the Full Set of variables, and
(c) the Metric strategy, with the Optimized Set of variables. Each point on the plot represents one simulation for a damaged
network. The coloration signifies the density of the point cloud: blue points signify low density of points in the vicinity, and
red points signify high density of points in the vicinity.
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(a) (b)

Figure 4: (a) Binned mean squared error (MSE), and (b) binned mean absolute error (MAE) of the nodal unsatisfaction using
the Näıve and Metric models..

observations of Figure 3a. For the two Metric strategies, the Optimal Set is inferior only in the regions of
low nodal unsatisfaction values, which are not as important since the focus is on highly disrupted networks.
These results further demonstrate the good performance of the Optimized Set Random Forest model.

4.2. Sensitivity of Predictive Power to Training Data Size

The previous subsection demonstrated the capability of the Metric strategy, Optimized Set to maintain
superior predictive power despite the use of only three predictor variables. Recall that these models have
been constructed using 1,820 training data points. This subsection aims to push the efficiency of this strategy
further by reducing the size of the training data and observing the impact to predictive power.

Next models are built using the Metric strategy with the Optimized Set of predictor parameters, but
using differing amounts of training data. The first model (designated Tr500 ) uses 500 training data points.
The second model (Tr100 ) uses 100 training data points. The third model (Tr10 ) uses only 10 training
data points, to observe the effects of very little model training. All three models use subsets of the 1,820
data points originally used for training.

Figure 5 presents the scatter plots of the predicted values versus the true values for these models.
Tr500 performs well and resembles the performance of the previous model using 1,820 training data points.
Meanwhile, Tr100 appears to exhibit a constraint in predicted values below 0.5, and Tr10 exhibits a strong
constraint in only predicting values between 0.6 and 0.8, reminiscent of the scatter plot for the Näıve model.
This again demonstrates the limitation of the Random Forest methodology to extrapolate if the training is
inadequate. On the other hand, for Tr100 the region with higher nodal unsatisfaction appears to perform
nearly as well as the other models. For Tr10, there is still a slight correlation between the predicted and
true values, as the bottom left and top right areas of the scatter plot exhibits a high density of data points.
The predictive power of the Random Forest has severely deteriorated, however, due to the extremely limited
training data.

To supplement this analysis, the MSE and MAE of these models are calculated. The overall MSE of
Tr500, Tr100, and Tr10 are 0.0274, 0.0356, and 0.0496, respectively, and the overall MAE values are 0.1266,
0.1409, and 0.1939, respectively. Recall that the MSE and MAE for Opt are 0.0266 and 0.1259. The binned
MSE and MAE for these models are also calculated, and shown in Figure 6.

Consistent with the previous analysis, Tr500 adequately replicates the performance of Opt, and Tr100
performs well for larger nodal unsatisfaction values. Tr10 performs well within a limited region, though this
is an artifact of its constrained predictions and not an indicator of predictive power. These results imply
that 500 training data points may sufficiently cover the parameter space to yield adequate predictions.
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(a) (b)

(c) (d)

Figure 5: Scatter plots depicting the true nodal unsatisfaction from the hydraulic model versus the predicted nodal unsatis-
faction from the Random Forest models using the Metric strategy, Optimized set, but differing amounts of training data. (a)
Using 500 training data points (Tr500 ). (b) Using 100 training data points (Tr100 ). (c) Using 10 training data points (Tr10 ).
(d) Using 1,820 data points (Opt).
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(a) (b)

Figure 6: (a) Binned mean squared error (MSE), and (b) binned mean absolute error (MAE) using the Metric models with
varying amounts of training data.

Additionally, a training data size of 100 may still perform adequately if only high nodal unsatisfaction is of
interest.

5. Statistical Learning Strategies for Retrofit Selection

While Section 4 assessed the performance of the proposed statistical models in terms of their predictive
power, this section evaluates the performance of the models in their application to network component
retrofit selection. The Random Forest models are used to predict network performance, and those simulations
yielding high nodal unsatisfaction are used for pipe segment retrofit selection using methods described in
[1]. These results are compared with those using hydraulic simulation to determine network performance.

5.1. Effectiveness of Retrofits Using the Optimized Random Forest Model

This section first presents the effectiveness of retrofits selected using simulations with nodal unsatisfaction
above the threshold of 0.8. The Random Forest model using the Metric strategy, with the Optimized Set of
variables, is used to predict the nodal unsatisfaction values. This model is trained using 1,820 data points,
and used to predict damage simulations to be above or below a nodal satisfaction of 0.8. 55 km of pipeline,
corresponding to roughly 25% of the pipelines, are selected for retrofit according to [1]. Here, retrofits are
assumed here to make pipes invulnerable to damage. Figure 7 presents the network reliability after the
application of retrofits in the form of the annual exceedance rate of nodal unsatisfaction. The network with
retrofits identified using the Random Forest model is labeled as Opt, and this is compared to the network
with retrofits using hydraulic simulation, labeled as Hydraulic.

Figure 7 indicates that the Random Forest model predictions are capable of replicating the retrofit effec-
tiveness of those calculated using hydraulic simulation. Additionally, the retrofits selected by the Random
Forest model and the hydraulic simulation model share approximately 95% of pipeline, by length. So, de-
spite the variability in predicted values observed in the scatter plots, the Random Forest models perform
well in selecting effective retrofits.

Note that despite the moderate prediction error indicated by the scatter plot in Figure 3 and the binned
MSE and MAE in Figure 4, the Random Forest model largely matched the hydraulic model in identifying
important pipes. However, the application of these models to retrofit selection changes the nature of the
prediction. Since simulations are labeled as “highly disrupted,” the objective becomes the classification of
maps above or below the threshold. The model need only assign the correct label, rather than precisely
predict nodal unsatisfaction.
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Figure 7: Network performance in terms of the annual exceedance rate of the nodal unsatisfaction after the application of
retrofits. Retrofits are selected using either hydraulic simulation (labeled Hydraulic) or a Random Forest model using the
Metric strategy, with the Optimized Set of variables (labeled Opt).

The power of the Random Forest models to classify is assessed using the confusion matrix. The confusion
matrix describes the proportion of data that is correctly or incorrectly labeled. Given two classification labels
A and ∼ A (not A), the confusion matrix is composed of the true negative (the proportion of data correctly
labeled as ∼ A), false positive (the proportion of the data incorrectly labeled as A), false negative (the
proportion of the data incorrectly labeled as ∼ A), and true positive (the proportion of the data correctly
labeled as A). Using the confusion matrix, we may determine the classification accuracy—the proportion of
data that is correctly labeled—by summing the true negative and true positive proportions. Furthermore,
as retrofit selection uses those maps that are classified to be above the threshold of 0.8, we also consider the
proportion of confounding data—the proportion of the data included for retrofit selection that should not
have been included. The proportion of confounding data is the ratio of false positive labels to the sum of the
false positive and true positive labels. The proportion of confounding data captures the amount of incorrect
data (or noise) integrated into retrofit selection, which may impact the effectiveness of the resulting retrofits.

For the model used in Figure 7, this may be seen in Figure 8, which depicts the scatter plot from Figure 3c
with dashed black lines indicating the threshold used to indicate high disruption. Points to the left of the
vertical dashed black line are truly below the threshold and should not be included in the retrofit selection
procedure. Those right of the line are truly above the threshold should be included in the selection. Those
below the horizontal dashed black line are predicted to be below the threshold and are not included in the
selection. Those above the line are predicted to be above the threshold and included in the selection. The
quadrants formed by these dashed black lines correspond to the elements of the confusion matrix (e.g., the
the top right quadrant are true positive events). The proportions of the true negative, false positive, false
negative, and true positive are 0.62, 0.06, 0.17, and 0.15, respectively. Using these values, the classification
accuracy is 0.77, and the proportion of confounding data is 0.31.

The selection of the retrofits using this model suggests that this classification accuracy is high enough, or
alternatively the proportion of confounding data is low enough, such to yield an adequate set of simulations
to efficiently select retrofits. Despite this moderate proportion of confounding data, the Random Forest
model is capable of matching 95% of pipeline retrofits identified using hydraulic modeling. One explanation
is that the confounding data does identify a subset of truly important pipelines, and this is reinforced by the
contribution of the correctly labeled data. Furthermore, the procedure for retrofit selection is reasonably
robust as the threshold of 0.8 is not a strict one—similar network performance was observed when this
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Figure 8: Scatter plot depicting the predictive power of the Random Forest model using the Optimized set of variables. The
dashed black lines indicate the threshold to determine high network disruption and define the boundary between class labels
of data points (i.e. included or not included in retrofit selection) for the associated classification problem.

threshold was varied [2]. Thus, the random forest models are not required to correctly classify each damage
simulation as long as they can identify highly disrupted networks.

5.2. Sensitivity of Retrofit Selection Effectiveness to Predictive Power

This subsection performs a sensitivity analysis of the adequacy of the threshold for determining high
network disruption and effectiveness of the resulting retrofit selection to the predictive power of the Random
Forest models. First, the impact on retrofit effectiveness due to the reduction of training data for the Random
Forest model is evaluated. The models corresponding to Tr500, Tr100, and Tr10 defined in Section 4 are
employed here for retrofit selection. Figure 9 depicts the resulting network performance using these models,
compared to the Hydraulic and Opt curves from Figure 7. An additional curve depicting the network
performance with no retrofits is added for comparison and labeled Baseline.

Observing Figure 9, the Tr500 and Tr100 models appear to perform just as well as Opt and Hydraulic,
while the Tr10 model exhibits a large disparity in the effectiveness of the retrofits. This is consistent with
the previous analysis of the predictive power of these models, in which Tr500 performed as well as Opt,
while Tr10 exhibited perceivable inadequacies. In fact, recalling Figure 5c, the Tr10 model cannot predict
values above 0.8, so the selected retrofits are completely random. Also recall, the Tr100 model had higher
overall prediction errors, but performs well in predicting the higher nodal unsatisfaction cases important
for retrofit selection. This further demonstrates the capability of the Random Forest model to perform well
with a relatively small amount of training: on the order of 500 data points, and potentially down to 100
data points, depending on the application and the features of the training data.

Next, this section assesses the impact of using the Näıve strategy for nodal unsatisfaction predictions
during retrofit selection. Figure 10 depicts the network performance after retrofits are selected and im-
plemented using hydraulic simulation, the Metric model with the Optimized Set, and the Näıve model to
determine highly disrupted simulations, whose curves are denoted Hydraulic, Opt, and Naive, respectively.

In Figure 10, interestingly, both Random Forest models appear to perform comparably to the hydraulic
simulation. This is despite the disparity in predictive power between the Näıve and Metric strategies.
Additionally, the retrofit selection from the Näıve strategy matches approximately 92% of pipeline, by
length, with the retrofit selection from the use of hydraulic simulation.

An analysis of the confusion matrix may explain the performance of the Näıve strategy. Its true negative,
false positive, false negative, and true positive proportions are 0.676, 0.012, 0.269, and 0.043, respectively.
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Figure 9: Network performance in terms of the annual exceedance rate of the nodal unsatisfaction after the application of
retrofits. Retrofits are selected using either hydraulic simulation (labeled Hydraulic), a Random Forest model using the Metric
strategy with the Optimized Set of variables and 1,820 training data (labeled Opt), a model constructed with 500 training data
(labeled Tr500), a model constructed with 100 training data (labeled Tr100), and a model constructed with 10 training data
(labeled Tr10). The curve labeled Baseline describes the network performance with no retrofits.

Figure 10: Annual exceedance rate of the nodal unsatisfaction after the application of retrofits. Retrofits are selected using
hydraulic simulation (labeled Hydraulic), a Random Forest model using the Metric strategy, with the Optimized Set of variables
(labeled Opt), and a Random Forest model using the Näıve strategy. The curve labeled Baseline describes the network
performance with no retrofits.
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Table 2: Approximate Computation Times of Network Performance Estimation Methods To Simulate or Predict Future Data.

Procedure Computation Time (seconds)
Hydraulic Simulation

Simulation, per data point 1, 000
Total time (1 Simulation) 1, 000
Total time (1,820 Simulations) 1, 800, 000

Näıve Strategy
Data assembly and prediction, per data point < 1
Model training (1,820 training data points) 60, 000
Total time (1 Prediction) 60, 000
Total time (1,820 Predictions) 60, 000

Metric Strategy, Full Set
Precalculations, supplementary tools 450
Metric calculations, per data point 6
Model training (1,820 data points) 60
Prediction, per data point < 1
Total time (1 Prediction) 520
Total time (1,820 Predictions) 12, 000

Metric Strategy, Optimized Set
Precalculations, supplementary tools 60
Metric calculations, per data point 1.5
Model training (1,820 data points) 10
Prediction, per data point < 1
Total time (1 Prediction) 75
Total time (1,820 Predictions) 3, 000

This yields a classification accuracy of 0.72 and a proportion of confounding data of 0.21. Thus, although
the Näıve strategy is poorer at predicting nodal unsatisfaction and poorer at classifying maps with high
nodal unsatisfaction, it has a competitive classification accuracy (compared to 0.77 for the Metric strategy,
Optimized Set) and a lower proportion of confounding data (compared to .31 for the Metric strategy,
Optimized Set). Thus, while the Näıve strategy is less accurate overall, the data used during retrofit
selection is just as accurate by proportion, which may explain its ability to select efficient retrofits.

5.3. Computational Advantages of Statistical Learning Methods

The previous sections in this paper have analyzed and discussed the accuracy of the proposed Random
Forest models, which is typically the concern for surrogate models. This section briefly discusses the advan-
tages for the use of the Random Forest models in terms of the efficiency in computation time for estimating
network performance for future data points. For the hydraulic simulation strategy, the direct computation
time is reported. For the statistical learning strategies, the computation time for data assembly, metric cal-
culations, model training, and model prediction are reported. Results are tabulated in Table 2, and reflect
empirical computation times performed in series (i.e. omitting opportunities for parallel processing) using
a 64 bit Windows 10 laptop with an Intel(R) Core(TM) i7-5500 2.40 GHz processor.

Table 2 shows that the primary cost of the Näıve strategy is model training, while most of the time for
the Metric strategies is spent calculating the explanatory metrics. The Random Forest models significantly
reduce computational expense: in comparison to hydraulic simulation, its computation time is 1/30th with
the Näıve strategy and 1/600th with the Metric strategy. Comparing the Random Forest models, the training
times of the Metric strategies are significantly better than that of the Näıve strategy, and outweigh the time
required to compute the explanatory metrics. This is due to the Näıve model having to grow decision trees
using a pool of 6,307 predictor variables, while the Metric strategies only deal with 49 for the Full Set and
3 for the Optimized Set. Further, predictions are effectively instant for all Random Forest models. Thus,
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once the model is constructed, subsequent network performance estimation is very fast, facilitating large
scale estimation and rapid assessment.

One disadvantage for using Random Forest models not reflected in Table 2 is that additional time must
be spent on precalculations and training of the model. Depending on the objective of the analyst, this
training time may or may not be a critical consideration. Two situations where training time is not critical
are as follows. First, for rapid network assessment of recovery strategies following a catastrophic event, a
Random Forest model can be prepared beforehand to enable rapid post-event predictions. Second, when
considering retrofit strategies, initial training can be done once, and then used when evaluating several
possible strategies.

6. Conclusion

This paper demonstrated the application of the Random Forest statistical learning technique for esti-
mating the reliability of water supply networks subject to seismic damage. Two strategies were explored:
a Näıve strategy, in which network component damage states are used as predictor variables, and a Metric
strategy, in which network component states are translated to a set of explanatory metrics, which are used
as predictor variables. Twenty-three metrics were considered, yielding 49 potential predictor variables when
considering their application to specific portions of the network. An optimized set of three predictor variables
were identified using the out-of-bag permuted variable delta error as the measure of variable importance.
The Random Forest model using the optimized set was seen to perform nearly as well as with the full set of
explanatory variables while performing better than the Näıve strategy. Additionally, the effect of training
data size on predictive power was assessed.

The retrofit strategies identified using Random Forest predictions performed similarly to those deter-
mined using hydraulic simulation. Then, the sensitivity of retrofit effectiveness to the training data size
and predictive power of the statistical model was considered, and the retrofit identification approach was
seen to be robust down to a certain minimum size of training data. The Random Forest strategies offer
great computation time advantages relative to direct hydraulic simulation, when the time to pre-train such
models can be afforded. These results indicate that statistical learning methods are powerful candidates for
rapid network reliability assessment, especially for large networks.

Future work could refine the hyperparameters for each Random Forest model, and explore methods for
developing training data that better covers the parameter space. Another opportunity for research is to
assess the proposed methodology on other networks. Though the predictive power and optimized metrics
reported from this case study are specific to this network, we anticipate that the approach should be broadly
applicable.

This paper has demonstrated the potential of statistical models to supplement or replace full physical
characterization and simulation for the estimation of network performance. Moreover, Random Forest
models, in combination with a set of explanatory metrics, have been shown to adequately replicate the
network performance estimates and retrofit strategies identified using hydraulic simulation. These features
make it an attractive candidate for infrastructure network risk assessment and decision support.
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