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ABSTRACT: For performance-based design, non-linear dynamictsiral analysis for various types of input
ground motions is required. Stochastic (simulated) groonaudions are sometimes useful as input motions,
because unlike recorded motions they are not limited in remalnd because their properties can be variec
systematically to understand the impact of ground motia@perties on structural response. Here a stochasti
ground motion model with time and frequency nonstatiogastdeveloped using wavelet packets. Wavelet
transform is a tool for analyzing time-series data with tamel frequency nonstationarity, as well as simulating
such data. Wavelet packet transform is an operation thaindeases time-series data into wavelet packet:
in the time and frequency domain, and its inverse transf@oomstructs a time-series from wavelet packets
The characteristics of a nonstationary ground motion tbezecan be modeled intuitively by specifying the
amplitudes of wavelet packets at each time and frequendiielproposed model, 13 parameters are sufficien
to completely describe the time and frequency charadsisf a ground motion. These parameters can be
computed from a specific target ground motion recording aielgyession analysis based on a large database «
recordings. The simulated ground motions produced by thegsed model reasonably match the target groun:
motion recordings in several respects including the spkatrceleration, inelastic response spectra, duratior
bandwidth, and time and frequency nonstationarity. In @aidi the median and logarithmic standard deviation
of the spectral acceleration of the simulated ground metmatch those of the published empirical ground
motion prediction. These results suggest that the sywatigetiund motions generated by the proposed mode
can be used for the non-linear dynamic structural analysiea@input ground motions.

1 INTRODUCTION are needed.
There are three general classes of strong groun
1.1 Background motion simulation techniques: physics-based mod-

els and stochastic models. Physics-models simulat

Performance-based design generally requires the ugEound motions by modeling the fault rupture, the
of large numbers of input ground motions for non-'€sulting wave propagation, and the near-surface sit
linear dynamic structural analysis, but the number ofMPplification. Since they require precise information

available recorded ground motions is limited and may2Pout the earthquake source, wave propagation pat

not be sufficient for characterizing a particular anal-8"d Soil structure, it is difficult and computationally

ysis condition. In order to obtain enough numbersEXpensive to produce simulations that cover the rang

of the ground motions, ground motion scaling and®f Possible future earthquakes. The problem is espe
spectral matching are widely used to adjust recorde§ia!ly difficult to simulate high-frequency motions.
ground motions and make them more representative Stochastic models, in contrast, are empirically cal-
of particular analysis conditions. However since thelbrated approaches that directly simulate the grounc
scaling and the spectrum matching modify the characmotion instead of modeling fault rupture, wave propa-
teristics of the ground motion recordings, they are nogation, and site amplification. This approach is in gen-
consistent with the physical conditions and the resultgral computationally inexpensive, and is equally ap-
from these operations could have the characteristicglicable for high and low frequencies. However since
different from those of the actual recordings (Lucomost stochastic models are based on modified Gaus
and Bazzurro 2007, Bazzuro and Luco 2006). ThereSian white noise processes, it is difficult to simulate
fore the artificial earthquake ground motions that ar¢he time and frequency nonstationarity.

consistent with both the physical condition and the Hybrid method (e.g.| Graves and Pitarka 2010)
characteristics of the actual ground motion recordinggombines two or more models. Typically it combines



the physics-based models for low frequency compotime and frequency modulating function. Further de-
nents and stochastic models for high frequency comtails are given below. 13 parameters are required tc
ponents through frequency filters. fully specify the model, and predictive equations for
For stochastic ground motion models, modeling ofthese parameters (as a function of earthquake magn
the temporal and spectral nonstationarities is importude, distance and site conditions) are calibrated usin
tant because the earthquake response of non-linetggression analysis on a large database of recorde
structures is affected by these nonstationarities ofround motions each of which has had these 13 pa
strong ground motions (e.g. Chakravorty and Van{ameters computed.
marck 1973 and Spanos et al. 2007). The temporal The proposed model has the following advantages
nonstationarity is defined as change in the amplitud@) the temporal and the spectral nonstationarity car
of the ground motion with time, and the spectral non-be controlled by adjusting the parameters describing
stationarity is defined as change in the frequency conamplitudes of wavelet packets, b) the model is empiri-
tent of the ground motion with time. cally calibrated and produces motions that are consis
Tho common types of stochastic ground motiontent in their important characteristics with observed
models are (stationary or nonstationary) Gaussiaground motion recordings and ground motion pre-
white-noise processes, and the evolutionary powefliction models, and c) the procedure is computation-
spectral density (EPSD) models. Using the first typeally inexpensive, so we can obtain large numbers of
of model,[Rezaeian and Kiureghian(2008, 2010) deground motions.
veloped a fully nonstationary stochastic model which
uses a modulated filtered white-noise process in thg o \yayelet packet transform and EPSD
time domain. Their model has the advantage that the
temporal and spectral nonstationarities are separatefyeveral approaches are available to capture tim
computed by modulating the response of a linear filland frequency nonstationarity, such as group delay
ter having time-varying characteristics with a white-time, instantaneous frequency, and zero-crossing rate
noise excitation. On the other hand, Spanos and Faillellowever nonstationarity can be expressed in only
(2004) proposed a wavelets-based method to estimatae of the time or frequency axis using those tools,
the EPSD of the target ground acceleration recordso it is difficult to characterize the whole distribu-
They used the continuous wavelet transform (CWT}tion of time and frequency characteristics. Short-Time
instead of the short-time Fourier transform (STFT)Fourier Transform (STFT) can detect time and fre-
in order to achieve an enhanced time resolution foquency characteristics in the time and frequency do-
high frequency components. Their implementationmain, but it is difficult to reconstruct a time series us-
was limited, however, to producing simulations thating an inverse of the STFT.
reproduced properties of a “seed” ground motion that Here we employ the wavelet packet transform for
was used for calibration, rather than producing simuimodeling time series with the time and frequency
lations for an arbitrary future earthquake scenario. nonstationarity because it can decompose the time s¢
The model proposed here is based on&lisson  ries into the wavelet packets in the time and frequency
and Kiremidjian (2002) and we extend their modeldomain and it can reconstruct the time series from the
using wavelet packet transform (WPT) since it canwavelet packets.
fully control the time and frequency characteristic of The forward and inverse wavelet packet transform
time series. The WPT is employed to approximate there defined as follows:
EPSD for stochastic ground motion modeling. The o
WPT is the extended version of the discrete waveletcij K :/ X(t)Lll} (Hdt (1)
transform (DWT), and it has the advantages of be- —o ’
ing able to control amplitudes in the time and fre- o
guency domain with constant resolution and of allow- 2l 2N
ing reconstruction of the original time series from theX(t) = Z z C'j,k‘l’},k(t) (2)
wavelet packets. By using WPT, one can thus main- i=1k=1

tain temporal and spectral nonstationarities in the time , , , ,
and frequency domain. wherex(t) is the time series,"2is the number of data

Since wavelet packets of actual signals tend to bd the time seriesg; , denotes théth set of wavelet
sparse, our model simulates ground motions by propackets at thgth scale parameter ads the transla-
ducing two groups of wavelet packets. The majortion parameter, ang; ,(t) is the wavelet packet func-
group, which contributes 70% of the energy of thetion, which is localized around the central titgeand
generated ground motion, consists of wavelet packfrequencyf;. In our model, the wavelet packet func-
ets with a bivariate lognormal distribution for their tion is computed from finite impulse response basec
time and frequency locations and an independent exapproximation of the Meyer wavelgt (Meyer 1986)
ponential distribution for their amplitudes. The minor because of its orthogonality and localization property.
group of coefficients, which contributes the remaining The evolutionary power spectral density (EPSD)
energy, have a bivariate lognormal distribution as acan be estimated using continuous wavelet transforn
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(Spanos and Failla 2004). Here we approximate the
EPSD using the wavelet packets. An arbitrary non-
stationary process described by the following general
form (Priestley 1996)

Amplitude
o
O

(6]

X(t) = /ZA(w,t)ei“’tdZ(w) (3) []

whereA(w,t) is the time- and frequency-dependent
modulating function, and(w) is a complex random
process with orthogonal increments such that . Idﬁ,,

Sr(wdw w=w @) .
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Where_EH indicates a eXpeCtatl_on arﬁ#(w) is the Figure 1: The relationship between the time, frequency, and
tW0'5|ded_p0W6r spectral density (PSD) for the zeravavelet domain. (a) time series, (b) Fourier spectrum, @d (
mean stationary process as follows: wavelet packets.

Freq(Hz

E[dZ(w)dZ*(w)] = {

X(t) :/ e“'dZ(w) (5) 1.3 Relationship between time history, Fourier
- spectrum, and wavelet packets

The two-sided EPSD of(t) is then defined as _
In order to control the time and frequency character-

St (w,t) = [A(w,1)[*Srr(w) (6) istics of the acceleration time series, we employ the

The wavelet packets of the procest) at a scalé and following five parameters:

a positionk can then be computed as

| ® (o S j Eacc:/ [X(t)[*dt = ZZ'CEJJZ (12)
= [ { [ M@vdazie fular @) - '
Due to the time localization properties of the wavelet "

l,U}’k(t) around the timdy, it can be assumed that En(t) = / t|X(t)|2dt/Eacc (13)

d ~ / A1) (@)dZ(w) (8)

— t5+tg5 5 2 t 2
wheret =t —ty and LIJij(oo)dZ(a)) is a complex ran- Jis x(®)[dt _ 0.9 M
dom process, which has the orthogonality property of Eacc
Z(w). Therefore, it supports the statement that the
wavelet packets at scale cij  can be considered a %
nonstationary oscillatory process with respect to thésn(f) = / FIR(F)[Pdf/Eacc (15)
timety. Then, the two-sided EPSD &ft) is given by -

=005 (14)

=0.9,
Eacc

Cij,k 21w 2 9
_—Aw,t W () |“Se+(w fs+fo5 5 1o ~
w ’ ( )‘ | ]( )| ff( ) ( ) ff5 9 5|X(f)|2df fOfS‘X(f)‘zdf

. 5 —
Further, an expectation of squar«.ﬂjq( can be defined Eace e Eace =0.05
by the equation (16)
E[|c) /] :A Cj*\“,vdw (10)  where Ey is the total energy of the acceleration

time seriesE(t) is the temporal centroidgs s is
® _ the 5— 95% significant duration (Trifunac and Brady
z/ |A(w,t)|2|w'j(w)|2%(w)dw (11)  1975) that contains 90% of the total enerBiy(f) is
o the spectral centroid, antys_s is the 5— 95% sig-
sincquij (w) is localized aroundy. nificant bandwidth that contains 90% of the total en-

ThereforeE[\cij .|| can be considered to be an ap_grgy. The total energy of the time series is conservec

imation of the EPSD. and we can generate th in wavelet packets because of the orthogonality of

proximat . ' . the wavelet packet function. To capture the other four
time-series data with particular time and frequenc

Yime-domain parameters using wavelet packets, we
characteristics using the wavelet packets and we ¢ b 9 P '

generate the time series with particular time and fre- ploy the following parameters:

quency characteristics using the wavelet packets. Fig- 2

ure[1 shows the relationship between the time, freE(t) =} Ztk‘c'm’ /Eace (17)
guency, and the wavelet domain. [



2 . .
Sz(t) _ Z Z (t— E(t)}2 ’dj,k‘ /Eace (18) I(;alrrggrgmplltude and the others have small amplitude
| The major group of wavelet packets are the larges
amplitude packets that together contain 70% of the to-
o2 tal energy in the ground motion (typically this is less
— et
E(f)= 2 Z fi ‘Ci,k’ /Eace (19) " than 1% of the total number of wavelet packets). The
! remaining smaller packets are in the minor group. The
overall wavelet packets are a combination of these
Sl |2 two groups as follows:
SN =y T U-EOP|eu /B @0
I |CIJ',|<| - |C|j,k,maj| +|C|j7k.,min| (22)
where E(t) is temporal centroidS(t) is temporal wherec. _andci, . are the wavelet packets in
i f) is spectral centroid, arf( f) is spec- Jkma) ©Lomin -
varlanc_eE( P ' P the major and minor group respectively.
tral variance, and they_are related_lfq,(t), tos s, In the major group, the amplitudes ¢ kma_|2
Fth(f)’ andfes—s Iret_spect}vely. V\lletdeflnl::' tthettlme a,?dlat the timet, and the frequency; are indébénélent
requency correlation of wavelet packets to contro : : L - ;
: : . . and identically distributed (i.i.d.) exponential random
the time and frequency nonstationarity as follows: variables WithE(|C'j,k,maj|2)’ and their time and fre-

2 guency locations that are independent of the ampli-
i Skt —E®)][fi —E(f)] ‘Cj,k’ tudes are i.i.d. bivariate lognormal random variables
pt, )= SOS(1)Eace (21)  with mean vector and covariance matrixtpfind f;.

The wavelet packets distribution in the minor group

Figure[2 shows that the target characteristics are eg® estimated by the bivariate lognormal function of
timated well with the parameters by the wavelet pack{he time and frequency.

ets. By controlling wavelet packets, therefore, we can, _ , ,
control the time and frequency characteristics of the *© In(t), ¥i =In(fi) (23)
time series.
. 2 1
50 20 ‘Clj kminl~ =
x ” 2nS(X)S(Y)/(1-R(X,Y)?)
_ _10 %
Z 10 = 1 AZ — 2R(X,Y)AB+ B2
1 = ——exp|— : i 24
) i .S*f X P 2o ry)y | B
22 10 50 25 10 50
X«—E(X) Yi—E(Y)
Eu(0) (s) 1955(5) A= ——F B=——--+ (25)
S(X) XY)
0 10 o wherety and f; are the time and frequency location of
- 5 = x Cj x min '€SPectivelyRis the correlation coefficient of
% % 3 In(t) and In(f;), and&; are i.i.d. lognormal random
S ) . variables with median one and logarithmic standard
x x" deviation of the residual of the wavelet packets in the
4 5 10 s 10 20 minor group from the bivariate lognormal function.
Eu(f) (Hz) foss (Hz2) Hence the 13 parameters are required in this model

Figure 2: Comparison of parameters between from time serie@N€ €ach ofE(t), S(t), E(f), S(f), andp(t, f) for
and wavelet packets. (a) temporal centroid, (8) % signif-  both groupSE(|C'J- K maj|2>’ Eacc for total Energy, and
icant duration, (c) spectral centroid, and (d) significaahdy the standard de\/iétion &

7I "

idth. : - .
W There are some minor restrictions on the time and
frequency boundaries of recorded ground motions, ir

order to avoid unreasonably long (but small ampli-

2 STOCHASTIC MODELING OF GROUND tude) shaking in the time axis and to avoid a resid-
MOTIONS USING WAVELET PACKET ual velocity. In the minor group, the stopping time of
TRANSFORM the wavelet packets given each frequency leigthe

temporal centroidt-20 given f; of the minor group,
The proposed stochastic ground motion model emand for in major group, the stopping time is the tem-
ploys two groups of wavelet packets (a major and mijporal centroich-10 given f; of the minor group such
nor group) because the wavelet packet transform ighat the wavelet packets in the major group suppose tt
compressive such that only few wavelet packets havexist within the main part of the ground motion. For



the frequency axis, the amplitudes of wavelet packets
are zero in the lowest frequency level.

In our model, the number of the wavelet packets is
16384 and the maximum wavelet decomposition level
Is nine for the lowest frequency level, therefore the ) (
longest applicable period that can be modeled in the 0
frequency domain is 104s.
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Using our stochastic ground motion model, 153 Time(s) Time(s)
ground motion recordings from the 1994 Nor_th”dgeFigure 3: Recording (target) and simulation for the Nodbs
earthquakeNly = 6.7) are considered. We estimated earthquake 17645 Saticoy St. recordifgp = 18km, Vszo =
the 13 model parameters for each of these recording@81n/s) (a).(c) time series and wavelet packets of the target
A trigger time correction is necessary when estimat_recordlng, (b),(d) time series and wavelet packets of thausi

] lation.
Ing the parameters because some parameters are spec-

b) s
d)
-

20

0

ified relative to a time = 0 point. We define the trig-
ger time in a recording as as the time when the ab-
solute value of the time series crossed 1% of PGA,
in order to have a consistent time = 0 point in each
observation. Also, the recorded ground motions are
truncated by the bandpass filters in the frequency do-
main to remove noise, and the filter frequencies dif-
fer ground motion to ground motion, which makes it
difficult to directly estimate mean frequencies in the
motions. To address this challenge, the parameters of
the target ground motions are estimated by the Maxi-
mum Likelihood Method, noting the filter frequencies
in the likelihood formulation.

With these estimated parameters, we then gener-
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ated 30(_) simulations for each target and Com_pUteﬁigure 4: Recording (target) and simulation for the Nodbé
the median ofE(t), tos_s5, mean period Ty Rathje  earthquake Santa Barbara UCSB Goleta recordiRg,f =

et al. 2004),fo5_5, and p(t, f), Arias intensity [ =~ 12%m Vso=3391/s) (a),(c) time series and wavelet packets of
Arias 1970), spectral acceleratio,), and inelas- ”}etgarg.et rfﬁprd'”gr and (b),(d) time series and wavelekgia
tic spectral displacemeng() from simulated ground ot the simuiation.

mot_ions. 4 REGRESSION ANALYSIS
Figures B andl4 show two recorded ground motions

at near and far distances, respectively, and selected

samples whose response spectra are the closest to t8enerating a ground motion from a particular earth-
median response spectra of the simulations. For thguake scenario (i.e., magnitude, distance and sit
target recordings, in the far field, PGAis small8t)  condition), the 13 parameters for our model need
is larger,p(t, f) is larger, andS(f) is smaller than to be connected to those scenario parameters. T
those in the near field. The simulations obtained fromyo this, two-stage regression analysis (Joyner an
our model reflect these characteristics, which are obBoore 1993,1994) is employed with moment magni-
served empirically and expected theoretically. tude (Mw), hypocentral distanceRgy ), rupture dis-

In figure[5, the median of the parameters reasontance Ryp), and average shear wave velocity within
ably match those of target recordings excegts. 30m depthVYs3g) as predictors.
The duratiortgs_5 of the simulation tends to be longer

L The database for the regression analysis is selecte
than that of the target recording in the case of shor - ,
duration because the stopping time of the recordinggrom the NGA database (Chiow et al. 2008), and con-

is unknown as well as trigger time and also the sim-ains fault normal component of 1408 strong ground

: ; : : motion recordings from 25 earthquakes. This is a sub:
ulation doesn’t stop completely in the both time and Ft of the database used in the BAOS (Boore anc

frequency axes, and the difference between the centrgl;, .
time of adjacent wavelet packets is 2.56s. Figliles étkmson 2008) model. For each of these ground mo-
lons, all 13 parameters were estimated.

and_] compar&,; and inelastiy, respectively, of the
recordings and associated simulations, and show that The following equation is a functional form for
the two have a reasonable match. Eace, @and the other parameters have similar functional
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Figure 5: Model parameters between from the target time se- 2 2
ries versus the median of the corresponding parameter fém 3 3 1 B 1
simulations. (a) temporal centroid(t), (b) significant duration, S o T=1s 8
tes_s, (C) mean period]y, (d) significant bandwidthfgs_s, (€) £ 701 1 10 100E 01 1 10 100
Arias intensity (3), and (f) correlation of wavelet packets be- target inelastic Sq(cm) target inelastic Sq(cm)
tween time and frequencgyt, f). Figure 7: Median of inelasti&; with ductility 4 = 8 between
target time series and simulations. &@)at T = 1s, and (b)S; at
forms: T=3s
log(Y) = a-+biMw + bylog(Mw) + colog(R) asFy/W (whereFy is the yield strength and/ is the
weight of the single-degree-of-freedom system), anc
+dlog(Vsgo) + 1 + & (26) are computed f_or elastic-pe_rfectly-_plastic (EP_I?) SYs-
tems with 5% viscous damping ratio and ductility ra-
tio u = 8 for inelastic behavior of force and displace-
R = /Raypt+h? (27)  ment [Chopra 2007).

_ _ _ Figured8[D, and10 show the median and logarith-
wheren and¢ are inter-event and inter-event residu- mic standard deviation d&, andF,/W, for both the
als, and these residuals for the 13 parameters are c@jround motions produced by our model and the pre-
related each otheh is determined to minimize the dictions from modern empirical models for those pa-

mean square error of the regression analysis. rameters. The results from our simulations match well
with those from the NGA GMPM except the case with

5 COMPARISON WITH GROUND MOTION T = 3s. This discrepancy OccurS.in part because the

PREDICTION MODELS wavelet packets at low frequencies have low resolu-

tion in the frequency domain, and so the fluctuation

To evaluate the regression equations and resultinf the amplitude and frequency of wavelet packets a
ONng periods cause large variations3n

simulations, we generated 300 samples for each ma _ _
nitude/distance/site condition of interest, and com- The parameterdgs s, mean period Tn, Rathje
pare properties of the resulting simulated motions tcet al. 2004), and Arias intensity,( /Arias 1970) are
empirical predictions of those properties from exist-computed for aiy = 7, vertical strike-slip fault with
ing ground motion prediction models (GMPM). Note Vsso = 270m/s and 1< Rgyp < 10Gkm Figure[11
that for brevity, in the text below we use the abbre-shows the medians and logarithmic standard devia
viations AS08, BA08, CB08, CY08 and CB10 to re- tions oftgs_s, Tm, andl, observed in our simulations
fer to the models of Abrahamson and Silva (2008),and predicted by appropriate GMPMs. All of these
Boore and Atkinson (2008), Campbell and Bozorgniaparameters from our s_lm.ulatlons reasonably matct
(2008)/ Chiou and Youngs (2008) and Bozorgnia et althose from GMPM predictions.

(2010), respectively. Finally, prediction erroe (Baker and Cornell 2005)
The S; and inelastic response spectra are comis computed for simulations witMy = 7, Rrup =
puted forviyy = 7, vertical strike-slip fault, andszo = 10km, Vs = 270m/s. The € of ground motion

270m/s for the Joyner-Boore distance & Ryjg <  recordings are considered to be normally distributec
10km). The Inelastic response spectra here is define(@ayaram and Baker 2008) and the correlation of the



€ at the different periods are correlated (Baker and =
Jayaram 2008). Figufe 12 shows a normal quantile- — median of GMPM U R
guantile plot (Q-Q plot) fore computed afl = 1s — — mediant1o of GMPM| & N
(indicating normality of the simulatiog’s), and the >I< median of Simulationd = 0.1
correlation ofe at pairs of periods (indicating good Simulations 001 L@ T20.9s
agreement with correlations in recorded ground mo- “Y 10 100
tions, as reported by Baker and Cornell 2005). Rys(km)
5 5
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Figure 8: Median of PGA and elasts; computed from the NGA
GMPM and simulations. (a) PGA, (19, atT = 0.2s, (c) & at
T=1s and (d)S; atT = 3s.
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Figure 9: Logarithmic standard deviation of PGA and elaSiic
computed from the NGA GMPM and simulations. RGA (b)
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6 CONCLUSIONS
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Figure 11: Median +/g bounds of other ground motion param-
eters computed from GMPMs and simulations. (a) simuléied
and predictions from Travasarou et al. (2003), (b) simdldig
and predictions frorn Rathje et al. (2004), and (c) simul&ed
and predictions fromn Abrahamson and Silva (1996).

significant duration, mean period, significant band-
width, Arias intensity, and th&, and F,/W values

that are comparable (in central value and variabil-
ity) to those same properties observed in recordec
ground motions. Furthermore, this model can simu-
late a ground motion with a specified moment mag-
nitude, hypocentral distance, rupture distance, an
Vs30. Additionally, the prediction errors @, (i.e., €)

A stochastic model for simulating earthquake groundare seen to be normally distributed and have correla
motions with time and frequency nonstationarity us-tion that is consistent with observations in recorded
ing wavelet packets has been developed. The pragground motions. These results suggest that the syr
posed model uses wavelet packets to describe anthetic ground motions generated by the proposec
plitude of the motion as a function of time and fre- model can be used for the non-linear dynamic struc-
guency; due to these packets having time and fretural analysis as the input ground motions. Current
quency localization, they are comparable to an evoluwork is studying whether these simulations do in fact
tionary power spectral density. This model can simu{produce appropriate levels of response in non-linea
late the target ground motion recordings having PGAstructural models.
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8 3 T —— Ground motion prediction equation (Attenuation Relation-
= 2c ship) for inelastic response spectr&arthquake Spec-
S ~ tra 26(1), 1.
T 0 :j Campbell, K. W. & Y. Bozorgnia (2008). NGA ground motion
5 9 = model for the geometric mean horizontal component of PGA,
S 5 0.5 PGV, PGD and 5% damped linear elastic response spectra fo
§ v (a) 03 Eggods ranging from 0.01s to 1@arthquake Spectra 24),
| 0 3 10" 0 :
Theoretical quantiles 10 T10 Chakravorty, M. K. & E. H. Vanmarck (1973). Probabilisticse
) e mic analysis of light equipment within buildingBroc. of 5th
Figure 12: The characteristics £f(a) the Q-Q plots of the and World Conference on Earthquake Engineering, Rome,.Italy
(b) the correlation of the in different periods. Chiou, B., R. Darragh, N. Gregor, & W. Silva (2008). NGA
project strong-motion databasearthquake Spectra 24),
7 SOFTWARE 23.

Chiou, B. S.-J. & R. R. Youngs (2008). An NGA Model for the

. . . average horizontal component of peak ground motion and
The stochastic model described here is imple- |esponse spectriarthquake Spectra 22), 173.

mented _in the Matlab programming environ- Chopra, A. K. (2007)Dynamics of structuresUpper Saddle
ment using the Matlab Wavelet Toolbox. Source River, NJ.: Prentice Hall. _
code and further documentation are available afraves, R. W. & a. Pitarka (2010). Broadband ground-motion

— . : : simulation using a hybrid approacBulletin of the Seismo-
stanford.edu/~bakerjw/gm_simulation.html. logical Society of America 149A), 2095-2123.

The web site also contains regression coefficientsyayaram, N. & J. W. Baker (2008). Statistical tests of thatjoi
earthquake ground motion list used in regression distribution of spectral acceleration valudulletin of the
analysis, and other relevant information for the vali-  Seismological Society of America(83 2231-2243. _
dation of this model. The current algorithm requiresJoyner, W. B. & D. M. Boore (1993). Methods for regression

. . analysis of strong-motion datBulletin of the Seismological
1 hour for 1000 simulations on a desktop computer Society of America §3), 469-487,

(Dell Optiplex 740 with AMD Athlon 64 dual core joyner, W. B. & D. M. Boore (1994). ErratBulletin of the Seis-
and 2GB of RAM). mological Society of America &%), 955-956.
Luco, N. & P. Bazzurro (2007). Does amplitude scaling of
ground motion records result in biased nonlinear struttura
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