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ABSTRACT: For performance-based design, non-linear dynamic structural analysis for various types of input
ground motions is required. Stochastic (simulated) groundmotions are sometimes useful as input motions,
because unlike recorded motions they are not limited in number and because their properties can be varied
systematically to understand the impact of ground motion properties on structural response. Here a stochastic
ground motion model with time and frequency nonstationarity is developed using wavelet packets. Wavelet
transform is a tool for analyzing time-series data with timeand frequency nonstationarity, as well as simulating
such data. Wavelet packet transform is an operation that decomposes time-series data into wavelet packets
in the time and frequency domain, and its inverse transform reconstructs a time-series from wavelet packets.
The characteristics of a nonstationary ground motion therefore can be modeled intuitively by specifying the
amplitudes of wavelet packets at each time and frequency. Inthe proposed model, 13 parameters are sufficient
to completely describe the time and frequency characteristics of a ground motion. These parameters can be
computed from a specific target ground motion recording or byregression analysis based on a large database of
recordings. The simulated ground motions produced by the proposed model reasonably match the target ground
motion recordings in several respects including the spectral acceleration, inelastic response spectra, duration,
bandwidth, and time and frequency nonstationarity. In addition, the median and logarithmic standard deviation
of the spectral acceleration of the simulated ground motions match those of the published empirical ground
motion prediction. These results suggest that the synthetic ground motions generated by the proposed model
can be used for the non-linear dynamic structural analysis as the input ground motions.

1 INTRODUCTION

1.1 Background

Performance-based design generally requires the use
of large numbers of input ground motions for non-
linear dynamic structural analysis, but the number of
available recorded ground motions is limited and may
not be sufficient for characterizing a particular anal-
ysis condition. In order to obtain enough numbers
of the ground motions, ground motion scaling and
spectral matching are widely used to adjust recorded
ground motions and make them more representative
of particular analysis conditions. However since the
scaling and the spectrum matching modify the charac-
teristics of the ground motion recordings, they are not
consistent with the physical conditions and the results
from these operations could have the characteristics
different from those of the actual recordings (Luco
and Bazzurro 2007, Bazzuro and Luco 2006). There-
fore the artificial earthquake ground motions that are
consistent with both the physical condition and the
characteristics of the actual ground motion recordings

are needed.
There are three general classes of strong ground

motion simulation techniques: physics-based mod-
els and stochastic models. Physics-models simulate
ground motions by modeling the fault rupture, the
resulting wave propagation, and the near-surface site
amplification. Since they require precise information
about the earthquake source, wave propagation path,
and soil structure, it is difficult and computationally
expensive to produce simulations that cover the range
of possible future earthquakes. The problem is espe-
cially difficult to simulate high-frequency motions.

Stochastic models, in contrast, are empirically cal-
ibrated approaches that directly simulate the ground
motion instead of modeling fault rupture, wave propa-
gation, and site amplification. This approach is in gen-
eral computationally inexpensive, and is equally ap-
plicable for high and low frequencies. However since
most stochastic models are based on modified Gaus-
sian white noise processes, it is difficult to simulate
the time and frequency nonstationarity.

Hybrid method (e.g., Graves and Pitarka 2010)
combines two or more models. Typically it combines



the physics-based models for low frequency compo-
nents and stochastic models for high frequency com-
ponents through frequency filters.

For stochastic ground motion models, modeling of
the temporal and spectral nonstationarities is impor-
tant because the earthquake response of non-linear
structures is affected by these nonstationarities of
strong ground motions (e.g. Chakravorty and Van-
marck 1973 and Spanos et al. 2007). The temporal
nonstationarity is defined as change in the amplitude
of the ground motion with time, and the spectral non-
stationarity is defined as change in the frequency con-
tent of the ground motion with time.

Tho common types of stochastic ground motion
models are (stationary or nonstationary) Gaussian
white-noise processes, and the evolutionary power
spectral density (EPSD) models. Using the first type
of model, Rezaeian and Kiureghian(2008, 2010) de-
veloped a fully nonstationary stochastic model which
uses a modulated filtered white-noise process in the
time domain. Their model has the advantage that the
temporal and spectral nonstationarities are separately
computed by modulating the response of a linear fil-
ter having time-varying characteristics with a white-
noise excitation. On the other hand, Spanos and Failla
(2004) proposed a wavelets-based method to estimate
the EPSD of the target ground acceleration record.
They used the continuous wavelet transform (CWT)
instead of the short-time Fourier transform (STFT)
in order to achieve an enhanced time resolution for
high frequency components. Their implementation
was limited, however, to producing simulations that
reproduced properties of a “seed” ground motion that
was used for calibration, rather than producing simu-
lations for an arbitrary future earthquake scenario.

The model proposed here is based on Thráinsson
and Kiremidjian (2002) and we extend their model
using wavelet packet transform (WPT) since it can
fully control the time and frequency characteristic of
time series. The WPT is employed to approximate the
EPSD for stochastic ground motion modeling. The
WPT is the extended version of the discrete wavelet
transform (DWT), and it has the advantages of be-
ing able to control amplitudes in the time and fre-
quency domain with constant resolution and of allow-
ing reconstruction of the original time series from the
wavelet packets. By using WPT, one can thus main-
tain temporal and spectral nonstationarities in the time
and frequency domain.

Since wavelet packets of actual signals tend to be
sparse, our model simulates ground motions by pro-
ducing two groups of wavelet packets. The major
group, which contributes 70% of the energy of the
generated ground motion, consists of wavelet pack-
ets with a bivariate lognormal distribution for their
time and frequency locations and an independent ex-
ponential distribution for their amplitudes. The minor
group of coefficients, which contributes the remaining
energy, have a bivariate lognormal distribution as a

time and frequency modulating function. Further de-
tails are given below. 13 parameters are required to
fully specify the model, and predictive equations for
these parameters (as a function of earthquake magni-
tude, distance and site conditions) are calibrated using
regression analysis on a large database of recorded
ground motions each of which has had these 13 pa-
rameters computed.

The proposed model has the following advantages:
a) the temporal and the spectral nonstationarity can
be controlled by adjusting the parameters describing
amplitudes of wavelet packets, b) the model is empiri-
cally calibrated and produces motions that are consis-
tent in their important characteristics with observed
ground motion recordings and ground motion pre-
diction models, and c) the procedure is computation-
ally inexpensive, so we can obtain large numbers of
ground motions.

1.2 Wavelet packet transform and EPSD

Several approaches are available to capture time
and frequency nonstationarity, such as group delay
time, instantaneous frequency, and zero-crossing rate.
However nonstationarity can be expressed in only
one of the time or frequency axis using those tools,
so it is difficult to characterize the whole distribu-
tion of time and frequency characteristics. Short-Time
Fourier Transform (STFT) can detect time and fre-
quency characteristics in the time and frequency do-
main, but it is difficult to reconstruct a time series us-
ing an inverse of the STFT.

Here we employ the wavelet packet transform for
modeling time series with the time and frequency
nonstationarity because it can decompose the time se-
ries into the wavelet packets in the time and frequency
domain and it can reconstruct the time series from the
wavelet packets.

The forward and inverse wavelet packet transform
are defined as follows:

ci
j,k =

∫ ∞

−∞
x(t)ψ i

j,k(t)dt (1)

x(t) =
2 j

∑
i=1

2N− j

∑
k=1

ci
j,kψ i

j,k(t) (2)

wherex(t) is the time series, 2N is the number of data
in the time series,ci

j,k denotes theith set of wavelet
packets at thejth scale parameter andk is the transla-
tion parameter, andψ i

j,k(t) is the wavelet packet func-
tion, which is localized around the central timetk and
frequencyfi . In our model, the wavelet packet func-
tion is computed from finite impulse response based
approximation of the Meyer wavelet (Meyer 1986)
because of its orthogonality and localization property.

The evolutionary power spectral density (EPSD)
can be estimated using continuous wavelet transform



(Spanos and Failla 2004). Here we approximate the
EPSD using the wavelet packets. An arbitrary non-
stationary process described by the following general
form (Priestley 1996)

x(t) =
∫ ∞

−∞
A(ω, t)eiωtdZ̄(ω) (3)

whereA(ω, t) is the time- and frequency-dependent
modulating function, and̄Z(ω) is a complex random
process with orthogonal increments such that

E[dZ̄(ω)dZ̄∗(ω)′] =

{

Sf f (ω)dω ω = ω ′

0 otherwise
(4)

whereE[·] indicates a expectation andSf f (ω) is the
two-sided power spectral density (PSD) for the zero
mean stationary process as follows:

x̄(t) =
∫ ∞

−∞
eiωtdZ̄(ω) (5)

The two-sided EPSD ofx(t) is then defined as

Sf f (ω, t) = |A(ω, t)|2Sf f (ω) (6)

The wavelet packets of the processx(t) at a scalei and
a positionk can then be computed as

ci
j,k =

∫ ∞

−∞

{

∫ ∞

−∞
A(ω, t)eiωtdZ̄(ω)

}

ψ i
j,k(t)dt (7)

Due to the time localization properties of the wavelet
ψ i

j,k(t) around the timetk, it can be assumed that

ci
j,k ≈

∫ ∞

−∞
A(ω, tk)e

iωtkΨi
j(ω)dZ̄(ω) (8)

whereτ = t − tk andΨi
j(ω)dZ̄(ω) is a complex ran-

dom process, which has the orthogonality property of
Z̄(ω). Therefore, it supports the statement that the
wavelet packets at scalei, ci

j,k can be considered a
nonstationary oscillatory process with respect to the
time tk. Then, the two-sided EPSD ofx(t) is given by

S
ci

j,k
WW = |A(ω, t)|2|Ψi

j(ω)|2Sf f (ω) (9)

Further, an expectation of squaredci
j,k can be defined

by the equation

E[|ci
j,k|

2] =
∫ ∞

∞
S

ci
j,k

WWdω (10)

≈
∫ ∞

∞
|A(ω, t)|2|Ψi

j(ω)|2Sf f (ω)dω (11)

sinceΨi
j(ω) is localized aroundωi .

ThereforeE[|ci
j,k|

2] can be considered to be an ap-
proximation of the EPSD, and we can generate the
time-series data with particular time and frequency
characteristics using the wavelet packets and we can
generate the time series with particular time and fre-
quency characteristics using the wavelet packets. Fig-
ure 1 shows the relationship between the time, fre-
quency, and the wavelet domain.
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Figure 1: The relationship between the time, frequency, and
wavelet domain. (a) time series, (b) Fourier spectrum, and (c)
wavelet packets.

1.3 Relationship between time history, Fourier
spectrum, and wavelet packets

In order to control the time and frequency character-
istics of the acceleration time series, we employ the
following five parameters:

Eacc =
∫ ∞

−∞
|x(t)|2dt = ∑

i
∑
k

|ci
j,k|

2 (12)

Eth(t) =
∫ ∞

−∞
t |x(t)|2dt/Eacc (13)

∫ t5+t95−5
t5 |x(t)|2dt

Eacc
= 0.9,

∫ t5
0 |x(t)|2dt

Eacc
= 0.05 (14)

Eth( f ) =
∫ ∞

−∞
f |x̂( f )|2d f/Eacc (15)

∫ f5+ f95−5
f5

|x̂( f )|2d f

Eacc
= 0.9,

∫ f5
0 |x̂( f )|2d f

Eacc
= 0.05

(16)

where Eacc is the total energy of the acceleration
time series,Eth(t) is the temporal centroid,t95−5 is
the 5−95% significant duration (Trifunac and Brady
1975) that contains 90% of the total energy,Eth( f ) is
the spectral centroid, andf95−5 is the 5− 95% sig-
nificant bandwidth that contains 90% of the total en-
ergy. The total energy of the time series is conserved
in wavelet packets because of the orthogonality of
the wavelet packet function. To capture the other four
time-domain parameters using wavelet packets, we
employ the following parameters:

E(t) = ∑
i

∑
k

tk
∣

∣

∣
ci

j,k

∣

∣

∣

2
/Eacc (17)



S2(t) = ∑
i

∑
k

{tk−E(t)}2
∣

∣

∣
ci

j,k

∣

∣

∣

2
/Eacc (18)

E( f ) = ∑
i

∑
k

fi
∣

∣

∣
ci

j,k

∣

∣

∣

2
/Eacc (19)

S2( f ) = ∑
i

∑
k

{ fi −E( f )}2
∣

∣

∣
ci

j,k

∣

∣

∣

2
/Eacc (20)

where E(t) is temporal centroid,S2(t) is temporal
variance,E( f ) is spectral centroid, andS2( f ) is spec-
tral variance, and they are related toEth(t), t95−5,
Eth( f ), and f95−5 respectively. We define the time and
frequency correlation of wavelet packets to control
the time and frequency nonstationarity as follows:

ρ(t, f ) =
∑i ∑k [tk−E(t)][ fi −E( f )]

∣

∣

∣
ci

j,k

∣

∣

∣

2

S(t)S( f )Eacc
(21)

Figure 2 shows that the target characteristics are es-
timated well with the parameters by the wavelet pack-
ets. By controlling wavelet packets, therefore, we can
control the time and frequency characteristics of the
time series.
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Figure 2: Comparison of parameters between from time series
and wavelet packets. (a) temporal centroid, (b) 5−95% signif-
icant duration, (c) spectral centroid, and (d) significant band-
width.

2 STOCHASTIC MODELING OF GROUND
MOTIONS USING WAVELET PACKET
TRANSFORM

The proposed stochastic ground motion model em-
ploys two groups of wavelet packets (a major and mi-
nor group) because the wavelet packet transform is
compressive such that only few wavelet packets have

large amplitude and the others have small amplitude
or zero.

The major group of wavelet packets are the largest
amplitude packets that together contain 70% of the to-
tal energy in the ground motion (typically this is less
than 1% of the total number of wavelet packets). The
remaining smaller packets are in the minor group. The
overall wavelet packets are a combination of these
two groups as follows:

|ci
j,k|

2 = |ci
j,k,ma j|

2 + |ci
j,k,min|

2 (22)

whereci
j,k,ma j andci

j,k,min are the wavelet packets in
the major and minor group respectively.

In the major group, the amplitudes of|ci
j,k,ma j|

2

at the timetk and the frequencyfi are independent
and identically distributed (i.i.d.) exponential random
variables withE(|ci

j,k,ma j|
2), and their time and fre-

quency locations that are independent of the ampli-
tudes are i.i.d. bivariate lognormal random variables
with mean vector and covariance matrix oftk and fi .

The wavelet packets distribution in the minor group
are estimated by the bivariate lognormal function of
the time and frequency.

Xk = ln(tk), Yi = ln( fi) (23)

|ci
j,k,min|

2 =
1

2πS(X)S(Y)
√

(1−R(X,Y)2)

×
1

XkYi
exp

[

−
A2−2R(X,Y)AB+B2

2{1−R2(X,Y)}

]

×ξk,i (24)

A =
Xk−E(X)

S(X)
, B =

Yi −E(Y)

S(Y)
(25)

wheretk and fi are the time and frequency location of
ci

j,k,min, respectively,R is the correlation coefficient of
ln(tk) and ln( fi), andξk,i are i.i.d. lognormal random
variables with median one and logarithmic standard
deviation of the residual of the wavelet packets in the
minor group from the bivariate lognormal function.

Hence the 13 parameters are required in this model:
one each ofE(t), S(t), E( f ), S( f ), and ρ(t, f ) for
both groupsE(|ci

j,k,ma j|
2), Eacc for total Energy, and

the standard deviation ofξk,i.
There are some minor restrictions on the time and

frequency boundaries of recorded ground motions, in
order to avoid unreasonably long (but small ampli-
tude) shaking in the time axis and to avoid a resid-
ual velocity. In the minor group, the stopping time of
the wavelet packets given each frequency leveli is the
temporal centroid+2σ given fi of the minor group,
and for in major group, the stopping time is the tem-
poral centroid+1σ given fi of the minor group such
that the wavelet packets in the major group suppose to
exist within the main part of the ground motion. For



the frequency axis, the amplitudes of wavelet packets
are zero in the lowest frequency level.

In our model, the number of the wavelet packets is
16384 and the maximum wavelet decomposition level
is nine for the lowest frequency level, therefore the
longest applicable period that can be modeled in the
frequency domain is 10.24s.

3 GROUND MOTION SIMULATION

Using our stochastic ground motion model, 153
ground motion recordings from the 1994 Northridge
earthquake (MW = 6.7) are considered. We estimated
the 13 model parameters for each of these recordings.
A trigger time correction is necessary when estimat-
ing the parameters because some parameters are spec-
ified relative to a time = 0 point. We define the trig-
ger time in a recording as as the time when the ab-
solute value of the time series crossed 1% of PGA,
in order to have a consistent time = 0 point in each
observation. Also, the recorded ground motions are
truncated by the bandpass filters in the frequency do-
main to remove noise, and the filter frequencies dif-
fer ground motion to ground motion, which makes it
difficult to directly estimate mean frequencies in the
motions. To address this challenge, the parameters of
the target ground motions are estimated by the Maxi-
mum Likelihood Method, noting the filter frequencies
in the likelihood formulation.

With these estimated parameters, we then gener-
ated 300 simulations for each target and computed
the median ofEth(t), t95−5, mean period (Tm Rathje
et al. 2004), f95−5, and ρ(t, f ), Arias intensity (Ia
Arias 1970), spectral acceleration (Sa), and inelas-
tic spectral displacement (Sd) from simulated ground
motions.

Figures 3 and 4 show two recorded ground motions
at near and far distances, respectively, and selected
samples whose response spectra are the closest to the
median response spectra of the simulations. For the
target recordings, in the far field, PGA is smaller,S(t)
is larger,ρ(t, f ) is larger, andS( f ) is smaller than
those in the near field. The simulations obtained from
our model reflect these characteristics, which are ob-
served empirically and expected theoretically.

In figure 5, the median of the parameters reason-
ably match those of target recordings exceptt95−5.
The durationt95−5 of the simulation tends to be longer
than that of the target recording in the case of short
duration because the stopping time of the recordings
is unknown as well as trigger time and also the sim-
ulation doesn’t stop completely in the both time and
frequency axes, and the difference between the central
time of adjacent wavelet packets is 2.56s. Figures 6
and 7 compareSa and inelasticSd, respectively, of the
recordings and associated simulations, and show that
the two have a reasonable match.
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Figure 3: Recording (target) and simulation for the Northridge
earthquake 17645 Saticoy St. recording (RRUP = 18km, VS30 =
281m/s) (a),(c) time series and wavelet packets of the target
recording, (b),(d) time series and wavelet packets of the simu-
lation.
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Figure 4: Recording (target) and simulation for the Northridge
earthquake Santa Barbara UCSB Goleta recording (RRUP =
123km,VS30 = 339m/s) (a),(c) time series and wavelet packets of
the target recording, and (b),(d) time series and wavelet packets
of the simulation.

4 REGRESSION ANALYSIS

Generating a ground motion from a particular earth-
quake scenario (i.e., magnitude, distance and site
condition), the 13 parameters for our model need
to be connected to those scenario parameters. To
do this, two-stage regression analysis (Joyner and
Boore 1993,1994) is employed with moment magni-
tude (MW), hypocentral distance (Rhyp), rupture dis-
tance (Rrup), and average shear wave velocity within
30m depth (VS30) as predictors.

The database for the regression analysis is selected
from the NGA database (Chiou et al. 2008), and con-
tains fault normal component of 1408 strong ground
motion recordings from 25 earthquakes. This is a sub-
set of the database used in the BA08 (Boore and
Atkinson 2008) model. For each of these ground mo-
tions, all 13 parameters were estimated.

The following equation is a functional form for
Eacc, and the other parameters have similar functional
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Figure 5: Model parameters between from the target time se-
ries versus the median of the corresponding parameter from 300
simulations. (a) temporal centroid,E(t), (b) significant duration,
t95−5, (c) mean period,Tm, (d) significant bandwidth,f95−5, (e)
Arias intensity (Ia), and (f) correlation of wavelet packets be-
tween time and frequency,ρ(t, f ).

forms:

log(Y) = a+b1MW +b2 log(MW)+c2 log(R)

+d log(VS30)+η +ξ (26)

R =
√

R2
RUP+h2 (27)

whereη andξ are inter-event and inter-event residu-
als, and these residuals for the 13 parameters are cor-
related each other.h is determined to minimize the
mean square error of the regression analysis.

5 COMPARISON WITH GROUND MOTION
PREDICTION MODELS

To evaluate the regression equations and resulting
simulations, we generated 300 samples for each mag-
nitude/distance/site condition of interest, and com-
pare properties of the resulting simulated motions to
empirical predictions of those properties from exist-
ing ground motion prediction models (GMPM). Note
that for brevity, in the text below we use the abbre-
viations AS08, BA08, CB08, CY08 and CB10 to re-
fer to the models of Abrahamson and Silva (2008),
Boore and Atkinson (2008), Campbell and Bozorgnia
(2008), Chiou and Youngs (2008) and Bozorgnia et al.
(2010), respectively.

The Sa and inelastic response spectra are com-
puted forMW = 7, vertical strike-slip fault, andVS30=
270m/s for the Joyner-Boore distance (1≤ RJB ≤
100km). The Inelastic response spectra here is defined
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Figure 7: Median of inelasticSd with ductility µ = 8 between
target time series and simulations. (a)Sa atT = 1s, and (b)Sa at
T = 3s.

asFy/W (whereFy is the yield strength andW is the
weight of the single-degree-of-freedom system), and
are computed for elastic-perfectly-plastic (EPP) sys-
tems with 5% viscous damping ratio and ductility ra-
tio µ = 8 for inelastic behavior of force and displace-
ment (Chopra 2007).

Figures 8, 9, and 10 show the median and logarith-
mic standard deviation ofSa andFy/W, for both the
ground motions produced by our model and the pre-
dictions from modern empirical models for those pa-
rameters. The results from our simulations match well
with those from the NGA GMPM except the case with
T = 3s. This discrepancy occurs in part because the
wavelet packets at low frequencies have low resolu-
tion in the frequency domain, and so the fluctuation
of the amplitude and frequency of wavelet packets at
long periods cause large variations inSa.

The parameterst95−5, mean period (Tm, Rathje
et al. 2004), and Arias intensity (Ia, Arias 1970) are
computed for aMW = 7, vertical strike-slip fault with
VS30 = 270m/s and 1≤ RRUP ≤ 100km. Figure 11
shows the medians and logarithmic standard devia-
tions of t95−5, Tm, andIa observed in our simulations
and predicted by appropriate GMPMs. All of these
parameters from our simulations reasonably match
those from GMPM predictions.

Finally, prediction errorε (Baker and Cornell 2005)
is computed for simulations withMW = 7, RRUP =
10km, VS30 = 270m/s. The ε of ground motion
recordings are considered to be normally distributed
(Jayaram and Baker 2008) and the correlation of the



ε at the different periods are correlated (Baker and
Jayaram 2008). Figure 12 shows a normal quantile-
quantile plot (Q-Q plot) forε computed atT = 1s
(indicating normality of the simulationε ’s), and the
correlation ofε at pairs of periods (indicating good
agreement with correlations in recorded ground mo-
tions, as reported by Baker and Cornell 2005).
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Figure 8: Median of PGA and elasticSa computed from the NGA
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6 CONCLUSIONS

A stochastic model for simulating earthquake ground
motions with time and frequency nonstationarity us-
ing wavelet packets has been developed. The pro-
posed model uses wavelet packets to describe am-
plitude of the motion as a function of time and fre-
quency; due to these packets having time and fre-
quency localization, they are comparable to an evolu-
tionary power spectral density. This model can simu-
late the target ground motion recordings having PGA,
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Figure 10: Median +/-σ bounds ofFy/W with ductility µ = 8
computed from the GMPM and simulations. (a)Sa at T = 0.2s,
(b) Sa atT = 1s, and (c)Sa atT = 3s.
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significant duration, mean period, significant band-
width, Arias intensity, and theSa and Fy/W values
that are comparable (in central value and variabil-
ity) to those same properties observed in recorded
ground motions. Furthermore, this model can simu-
late a ground motion with a specified moment mag-
nitude, hypocentral distance, rupture distance, and
VS30. Additionally, the prediction errors ofSa (i.e.,ε)
are seen to be normally distributed and have correla-
tion that is consistent with observations in recorded
ground motions. These results suggest that the syn-
thetic ground motions generated by the proposed
model can be used for the non-linear dynamic struc-
tural analysis as the input ground motions. Current
work is studying whether these simulations do in fact
produce appropriate levels of response in non-linear
structural models.
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7 SOFTWARE

The stochastic model described here is imple-
mented in the Matlab programming environ-
ment using the Matlab Wavelet Toolbox. Source
code and further documentation are available at
stanford.edu/~bakerjw/gm_simulation.html.
The web site also contains regression coefficients,
earthquake ground motion list used in regression
analysis, and other relevant information for the vali-
dation of this model. The current algorithm requires
1 hour for 1000 simulations on a desktop computer
(Dell Optiplex 740 with AMD Athlon 64 dual core
and 2GB of RAM).
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