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Abstract For performance-based design, nonlinear dynamic structural analysis us-
ing various types of input ground motions is required. Stochastic (simulated) ground
motions are sometimes useful as input motions, because their properties can be varied
systematically to study the impact of ground-motion properties on structural response,
and producing large numbers of ground motions is simple. This paper describes an
approach by which the wavelet packet transform can be used to characterize complex
time-varying earthquake ground motions, and it illustrates the potential benefits of
such an approach in a variety of earthquake engineering applications. A model is de-
veloped that requires 13 parameters to describe a given ground motion. These 13
parameters are then related to seismological variables such as earthquake magnitude,
distance, and site condition, through regression analysis that captures trends in mean
values, standard deviations, and correlations of these parameters observed in recorded
strong ground motions from 25 past earthquakes. The resulting regression equations
can then be used to predict ground motions for a future earthquake scenario. This
model is analogous to widely used empirical ground-motion prediction equations (for-
merly called attenuation models) except that this model predicts entire time series
rather than only response spectra. The ground motions produced using this predictive
model are explored in detail, and have elastic response spectra, inelastic response
spectra, durations, mean periods, and so forth, that are consistent in both mean and
variability with existing published predictive models for those properties.

Introduction

Nonlinear dynamic structural analysis generally requires
the use of large numbers of input ground motions in order to
determine the performance of structures in terms of proba-
bility distributions of engineering demand parameters, which
are used for performance-based design. However, the
number of available recorded ground motions is limited and
may not be sufficient for characterizing a particular analysis
condition.

In order to obtain additional ground motions for a par-
ticular analysis condition, ground-motion scaling and spec-
tral matching are widely used to adjust recorded ground
motions and make them more representative of the target
analysis condition. However, these approaches change the
relationship between characteristics of recorded ground mo-
tions and their original physical conditions, so the results of
these operations could have characteristics different from
those of actual recorded ground motions (e.g., Luco and
Bazzurro, 2007). An alternative approach is, therefore, to
generate artificial earthquake ground motions whose charac-
teristics are consistent with both the physical condition of
interest and the characteristics of the actual recorded ground
motions.

There are three general types of strong ground motion
simulation techniques (Douglas and Aochi, 2008): physics-

based simulations that generate ground motions by modeling
fault rupture and resulting wave propagation (e.g., Pitarka
et al., 1998), stochastic simulations that are empirically cali-
brated approaches to directly simulate the recorded ground
motions with target seismological and probabilistic charac-
teristics including variability of ground motions (e.g.,
Rezaeian and Der Kiureghian, 2010, 2012), and hybrid sim-
ulations which combine the first two (e.g., Graves and
Pitarka, 2010). We focus on the stochastic simulations in this
paper. With stochastic simulations, it is difficult to consider
physical phenomena such as surface waves, directivity, etc.,
explicitly because there are likely no parameters in the model
to control these effects; stochastic simulations may be ap-
pealing in some cases, however, because stochastic simula-
tions require fewer parameters and are computationally less
expensive than physics-based and hybrid simulations.

Regarding stochastic simulations, there are a number of
comprehensive literature reviews available (e.g., Shinozuka
and Deodatis, 1988; Rezaeian, 2010). One of the important
issues raised in these reviews is that of time and frequency
nonstationarity, which describes the changing amplitudes of
time series (temporal nonstationarity) and changing fre-
quency characteristics (spectral nonstationarity) in time. It
can affect the results of nonlinear dynamic structural analysis
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(e.g., Conte, 1992; Spanos, Giaralis, and Politis, 2007), in
part because the structure’s behavior is also nonstationary
as it is driven to nonlinear response and its resulting natural
period increases (Papadimitrios, 1990).

Rezaeian (2010) places existing stochastic ground-mo-
tion models into four categories: (1) processes obtained by
passing a white noise through a filter (e.g., Shinozuka and
Sato, 1967; Alamilla et al., 2001) with subsequent modula-
tion in time for temporal nonstationarity; (2) processes
obtained by passing a train of Poisson pulses through a linear
filter (e.g., Cornell, 1964), these processes can generate
ground motions with time and frequency nonstationarity us-
ing modulation in time (Lin, 1986); (3) autoregressive mov-
ing average (ARMA) models (e.g., Hoshiya and Hasgur,
1978; Sgobba et al., 2011), Sgobba et al. (2011) proposed
the model with parameters related to seismological informa-
tion through regression analysis; and (4) various forms of
spectral representation (e.g., Page, 1952; Priestley, 1965;
Pousse et al., 2006). These models use a short-time Fourier
transform or wavelet transform to develop a time-frequency
modulating function that matches a particular recorded
ground motion. Also, Thráinsson and Kiremidjian (2002)
use phase differences in the ground-motion components of
various frequencies to generate ground motions with time-
frequency nonstationarity. The model proposed in this paper
characterizes the signal in the time and frequency domain
using wavelet transforms, so it fits into the fourth category.

Various researchers have used the wavelet transform to
characterize ground motions. Among them, Masuda and
Sone (2002) and Spanos et al. (2007) generated artificial
ground motions with specified time and frequency character-
istics. Their implementations were limited, however, to
produce simulations that reproduced properties of a “seed”
ground motion that was used for calibration, rather than
producing simulations for an arbitrary future earthquake sce-
nario. Nakamura et al. (2008) proposed a model to generate
artificial ground motions having a target response spectra
using a linear combination of wavelet coefficients from a
large number of recorded ground motions using the discrete
wavelet transform (DWT). The time and frequency character-
istics of the simulated motions are taken to match those of a
reference recorded ground motion. Amiri et al. (2011) used
the wavelet packet transform (WPT) to generate artificial
ground motions compatible with a target pseudovelocity
response spectrum and having time and frequency nonstatio-
narity. Their model used a neural network to predict the
amplitudes of wavelet packet coefficients. The simulations
from this model are conditional on a target spectrum rather
than seismological parameters, however, so it is difficult to
generate ground motions that represent the full variability of
potential future ground motions. Sasaki et al. (2003) pro-
posed a model using the DWT to generate artificial ground
motions with time and frequency nonstationarity, and attenu-
ation models to predict their model parameters. However,
the DWT has limited ability to control the time location of

long-period energy, and the realism of variability in the si-
mulated ground motions is not discussed.

In this paper, the WPT is employed in order to quantify
the time and frequency characteristics of time series for sto-
chastic ground-motion modeling. Among options for wave-
let analysis, the continuous wavelet transform is difficult to
use to reconstruct time series, due to the nonorthogonality of
the wavelets at adjacent times and frequencies, and the DWT
has low time-domain resolution at long periods, making it
difficult to control long-period properties of the simulations.
The WPT is the extended version of the DWT. The WPT
allows much more flexibility in controlling resolution in the
time and frequency domains, and its basis functions are
orthogonal, which allows for easy reconstruction of time
series by simulating wavelet packets. For these reasons, the
WPT has been noted by several of the above-cited authors as
an effective tool for producing nonstationary time series.

Another important feature of the proposed stochastic
ground-motion model is the variability of simulated ground
motions, as this affects the variability of structural responses
(e.g., Rezaeian and Der Kiureghian, 2010, 2012). The pro-
posed model requires 13 model parameters that are predicted
via regression models. The regression model includes vari-
ability in predicted parameters, and this introduces appropri-
ate variability into the properties of the simulated ground
motions. The simulated ground motions from the proposed
model are observed to have similar characteristics to existing
ground-motion prediction equations (GMPEs) in terms of the
median and variability of spectral acceleration (e.g., Boore
and Atkinson, 2008), correlation of residuals (Baker and
Jayaram, 2008), inelastic response spectra (Bozorgnia et al.,
2010), Arias intensity (Arias, 1970), mean period (Rathje
et al., 2004), and significant duration (Trifunac and Brady,
1976). The realism of the simulated motions with respect to
so many parameters of engineering interest suggests that
these simulations are appropriate for use in structural analy-
sis or hazard analysis.

Stochastic Ground-Motion Model

Wavelet Packet Transform

We employ the WPT to decompose a ground-motion
time series into wavelet packets in the time and frequency
domain, and to reconstruct a time series from wavelet pack-
ets. The WPT is a modified version of the wavelet transform
defined as follows:

cij;k �
Z ∞
−∞

x�t�ψ i
j;k�t�dt; �1�

in which x�t� is the time series, cij;k denotes the ith set of
wavelet packet coefficients at the jth scale parameter and
kth translation parameter, and ψ i

j;k�t� is the wavelet packet
function. The parameter i indicates the location of the wave-
let packet in the frequency axis, parameter j indicates the
frequency resolution, and k indicates its location in the time
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axis. Assuming ψ i
j;k�t� is localized on the time and frequency

axes, the wavelet packets are related closely to the energy
distribution of the time series in the time and frequency
domain.

It is possible to reconstruct a time series from wavelet
packets using the inverse WPT as follows:

x�t� �
X2j
i�1

X2N−j

k�1

cij;kψ
i
j;k�t�; �2�

in which 2N is the number of time steps in the time series.
The number of wavelet packets required to describe a time
series is thus equal to the number of time steps. There are a
number of wavelet packet functions that can be used in these
transforms. Here the wavelet packet function is computed
from the finite-impulse response-based approximation of the
Meyer wavelet (Meyer, 1986) because it is orthogonal and
has good localization in both the time axis and the frequency
axis. The relationship between the time, frequency, and the
wavelet domain of time-series data is illustrated in Figure 1.
The approximate time interval (dtw) and frequency interval
(dfw) between the centers of adjacent wavelet packets can be
defined as follows:

dtw � 2Ndt
2N−j � 2jdt; �3�

dfw � fN
2j

� 1

2dt
1

2j
; �4�

in which 2N is the number of data in the time series, j is the
scale parameter, dt is the time step of the time series, and fN
is the Nyquist frequency. In our model, dt � 0:01 s and
j � 8, which leads to reasonable control of frequencies as

low as 0.1 Hz, and wavelet packets in the lowest frequency
level are controlled to ensure no residual velocities in simu-
lated time series.

To illustrate the result of WPTs for ground motions,
Figure 2 shows acceleration time series data of the 1994
Northridge California earthquake recorded at the LABSN
Station 00003 Northridge–17645 Saticoy Street station
(rupture distance �Rrup� � 12 km, average shear-wave veloc-
ity within 30 m depth �VS30� � 281 m=s) and at CGS–
CSMIP Station 25091 Santa Barbara–UCSB Goleta
(Rrup � 109 km, VS30 � 339 m=s) and their wavelet packet
coefficients. The duration of the Saticoy Street recording is
shorter than that of the UCSB Goleta recording, so ampli-
tudes of wavelet packet coefficients of the Saticoy Street
recording are large for a shorter window of time than in
the UCSB Goleta recording. In the UCSB Goleta recording,
the wavelet packets with high frequencies have very low am-
plitudes late in the recording. This is because the high-
frequency components of seismic motions attenuate more
rapidly with distance than the low-frequency components
and the latter waves include indirect waves that travel longer
distances than the direct waves, and thus have lower fre-
quency. This reasonably explains the observation in Figure 2
that spectral nonstationarity in the UCSB Goleta recording is
stronger than that in the Saticoy Street recording. To describe
this time and frequency nonstationarity, we compute the
correlation coefficient between the time and frequency of
the wavelet packet coefficients ρ�t; f�, as discussed in the
following section. For these examples, ρ�t; f� in the Saticoy
Street recording is −0:07 and in the UCSB Goleta recording
is −0:34.

Figure 1. The relationship between the time, frequency, and
wavelet domain. (a) Time series, (b) Fourier spectrum, and (c) wave-
let packets. Black squares in (c) indicate nonzero wavelet packet
coefficients at the corresponding time and frequency.

Figure 2. Wavelet packets for two example time series from the
1994 Northridge California earthquake. (a) Acceleration time series
and (c) squared amplitudes of wavelet packet coefficients from the
Saticoy Street recording, (b) acceleration time series, and
(d) squared amplitudes of wavelet packet coefficients from the
UCSB Goleta recording. The gray scales in (c) and (d) indicate
the squared amplitudes of wavelet packet coefficients.
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Stochastic Model of Ground Motion Using WPT

The WPT is a compressive transform that results in typ-
ical time series having only a few wavelet packet coefficients
with large amplitude and many small or near-zero amplitude
coefficients. To take advantage of this compression, and to
distinguish between large- and small-amplitude packets, our
model defines two groups of wavelet packet coefficients
(termed the major and minor groups of packets). The total
wavelet packet coefficients are a combination of these two
groups as follows:

jcij;kj2 � jcij;k;majj2 � jcij;k;minj2; �5�

in which cij;k;maj and cij;k;min are the wavelet packet coeffi-
cients in the major and minor groups, respectively.

The major group of wavelet packet coefficients consists
of the largest amplitude coefficients, which together contains
70% of the total energy in the ground motion (typically this is
less than 1% of the total number of wavelet packet coeffi-
cients). The remaining smaller packets are in the minor
group. The energy fraction used in separating the major
group was determined by varying this fraction until the dif-
ference of the characteristics (duration, bandwidth, and mean
frequency) of wavelet packet coefficients of the major and
minor groups was maximized.

To quantify the time and frequency characteristics of the
acceleration time series, we define the following 13 param-
eters: for the major group, (1) temporal centroid E�t�maj,
(2) temporal variance S2�t�maj, (3) spectral centroid
E�f�maj, (4) spectral variance S2�f�maj, (5) correlation be-
tween time and frequency of wavelet packet coefficients
ρ�t; f�maj, (6) mean of squared amplitudes of the wavelet
packet coefficients E�a�maj; and for the minor group, (7) tem-
poral centroid E�t�min, (8) temporal variance S2�t�min,
(9) spectral centroid E�f�min, (10) spectral variance
S2�f�min, (11) correlation between time and frequency of
wavelet packet coefficients ρ�t; f�min, (12) randomness of
amplitude of wavelet packets S�ξ�, and for the total wavelet
packet coefficients, and (13) cumulative squared acceleration
Eacc. The following equations define these parameters and
Figure 3 shows the relationship between wavelet packet co-
efficients and some of these parameters:

Eacc �
X
i

X
k

jcij;kj2 �
Z ∞
−∞

jx�t�j2dt; �6�

E�a�maj �
X
i

X
k

jcij;k;majj2=nmaj; �7�

E�t�maj �
X
i

X
k

ti;k;maj=nmaj; �8�

S2�t�maj �
X
i

X
k

fti;k;maj − E�t�majg2=�nmaj − 1�; �9�

E�f�maj �
X
i

X
k

fi;k;maj=nmaj; �10�

S2�f�maj �
X
i

X
k

ffi;k;maj − E�f�majg2=�nmaj − 1�; �11�

ρ�t; f�maj �

P
i

P
k
�ti;k;maj − E�t�maj��fi;k;maj − E�f�maj�

S�t�majS�f�maj�nmaj − 1� ;

�12�
in which nmaj is number of wavelet packet coefficients, and
ti;k;maj and fi;k;maj are the center of the time and frequency
location of a wavelet packet coefficient in the major group,
respectively;

E�t�min �
X
i

X
k

ti;k;minjcij;k;minj2=�0:3Eacc�; �13�

S2�t�min �
X
i

X
k

fti;k;min − E�t�ming2jcij;k;minj2=�0:3Eacc�;

�14�
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Figure 3. Plot of the wavelet packet coefficients from the
UCSB Goleta recording, indicating the relationship between the
parameters, E�t�, S�t�, E�f�, and S�f�, and the wavelet packet
coefficients.
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E�f�min �
X
i

X
k

fi;k;minjcij;k;minj2=�0:3Eacc�; �15�

S2�f�min �
X
i

X
k

ffi;k;min − E�f�ming2jcij;k;minj2=�0:3Eacc�;

�16�

ρ�t; f� �

P
i

P
k
�ti;k;min − E�t�min��fi;k;min − E�f�min�jcij;k;minj2

0:3EaccS�t�minS�f�min
;

�17�
in which ti;k;min and fi;k;min are the center of the time and
frequency location of a wavelet packet coefficient in the
minor group, respectively.

Major Group of Wavelet Packets

Statistical studies of major wavelet packet coefficients
indicated that their locations in time and frequency are de-
pendent, but that their locations are independent from their
amplitudes. Further, the squared amplitudes appear to be well
represented by exponential distributions and the locations
appear to be consistent with bivariate lognormal distribu-
tions. So the amplitudes and locations of these coefficients
are modeled using the following probability distributions

amaj ∼ Exponential�E�a�maj�; �18�

� tmaj fmaj � ∼ Lognormal�Mmaj;Σmaj�; �19�
in which ∼ denotes that the variable has the specified distri-
bution, amaj is the squared amplitude of a wavelet packet
coefficient in the major group cmaj, and tmaj and fmaj are
the center of the time and frequency location of a wavelet
packet coefficient in the major group, respectively. If we de-
fine X and Y as the natural log of time and frequency:

X � ln�tmaj�; Y � ln�fmaj�; �20�
then Mmaj and Σmaj are defined by

Mmaj � E�X� E�Y�� �
; �21�

Σmaj � S2�X� Cov�X; Y�
Cov�X; Y� S2�Y�

� �
; �22�

in which E�X� and E�Y� are means of ln�tmaj� and ln�fmaj�,
S�X� and S�Y� are standard deviations of ln�tmaj� and
ln�fmaj�, and Cov�X; Y� is covariance of ln�tmaj� and
ln�fmaj�, which can be computed by the parameters in equa-
tions (8)–(12). The squared amplitudes of wavelet packets at
the time tmaj and the frequency fmaj are independent and
identically distributed (i.i.d.) exponential random variables

with mean E�a�, and their time and frequency locations,
tmaj and fmaj, are also i.i.d. bivariate lognormal random
variables.

Minor Group of Wavelet Packets

Motivated by the past use of lognormal distributions to
model ground-motion Fourier amplitudes (e.g., Thráinsson
and Kiremidjian, 2002), here we use the lognormal distribu-
tion to model the frequency characteristics of the wavelet
packet coefficients. The median amplitudes of the minor
group of the wavelet packet coefficients are represented by
a bivariate lognormal probability density function (PDF) as a
function of the time and frequency, with a residual term
adding variability about that median amplitude.

First, we define X and Y as the natural log of time and
frequency locations of wavelet packets:

X � ln�tmin�; Y � ln�fmin�: �23�

The model for jcminj2 is then defined as follows:

jcminj2 �
1

2πS�X�S�Y�
����������������������������
�1 − ρ�X; Y�2�

p

×
1

tminfmin
exp

�
−
A2 − 2ρ�X; Y�AB� B2

2�1 − ρ2�X; Y��

�

× 0:3Eacc × ξ; �24�

in which A and B are defined as

A � X − E�X�
S�X� ; B � Y − E�Y�

S�Y� ; �25�

and cmin is a minor wavelet packet coefficient at the time tmin

and the frequency fmin, ρ�X; Y� is the correlation coefficient
of ln�tmin� and ln�fmin�, E�X� and E�Y� are means of ln�tmin�
and ln�fmin�, S�X� and S�Y� are standard deviations of
ln�tmin� and ln�fmin�, which can be computed by the param-
eters in equations (13)–(17), and Eacc is cumulative acceler-
ation from equation (6). The parameter ξ is a lognormal
random variable with median one and standard deviation that
is calibrated below. With this model, a bivariate lognormal
PDF has been used to specify the median amplitude of the
squared wavelet coefficient at a given time and frequency.
The random variable ξ is then used to specify variability
of the amplitudes around that median. jcminj2 is thus a ran-
dom variable, from which samples can be drawn when sim-
ulating ground motions. A random sign (positive or negative)
is applied to each wavelet packet coefficient and a variety of
tests suggested that this produces realistic time series.

Simulated Ground Motions

We estimated the 13 model parameters defined above for
the Saticoy Street and UCSB Goleta recordings of the 1994
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Northridge California earthquake, and then simulated wave-
let packet coefficients (and resulting time series) using the
above equations. Example acceleration, velocity, and dis-
placement time series of simulated ground motions are
shown in Figures 4 and 5, in comparison with the original
recorded ground motions. The waveforms and peak acceler-
ations, velocities, and displacements of the simulated ground
motions reasonably match those of the recorded ground mo-
tions, and more extensive testing of this type showed similar
results. This provides some indication that the above param-
eterization provides an accurate characterization of nonsta-
tionary earthquake ground motions.

Regression Analysis of Model Parameters

To generate a ground motion representing a particular
earthquake scenario (i.e., magnitude, rupture location, and
site condition), the 13 parameters for our model need to be
predicted as a function of those scenario parameters. To build
this predictive model, two-stage regression analysis (Joyner
and Boore, 1993, 1994) is employed with moment magni-
tude (Mw), hypocentral distance (Rhyp), rupture distance
(Rrup), and average shear-wave velocity within 30 m depth
(VS30) as predictor variables.

The recorded ground motions for the regression analysis
come from the Next Generation of Attenuation (NGA) data-
base (Chiou et al., 2008). The model presented here is for
fault-normal ground motions, and captures pulses sometimes
observed in that component due to directivity, so fault-
normal ground motions are selected from a subset of NGA
database used by Boore and Atkinson (2008) with a lowest

usable frequency less than or equal to 1 Hz. Additionally,
ground motions from that data set are only used if the causal
earthquake had at least ten recorded ground motions (in order
to stabilize the two-stage regression analysis). These criteria
result in 1408 ground motions from 25 earthquakes being
used. For each ground motion, the 13 model parameters are
estimated using the maximum likelihood estimation (ac-
counting for frequency truncation due to filtering and a time-
shift trigger-time correction, Yamamoto and Baker, 2011).
The correlations of time and frequency in the major and
minor groups are transformed by the following equation be-
cause they are bounded at −1 and 1:

ρ0 � Φ−1
�
ρ� 1

2

	
; �26�

in which Φ is the cumulative density function of the standard
normal distribution, ρ is the estimated correlation coefficient,
and ρ0 is the transformed (and unbounded) coefficient that is
more suitable for prediction using regression equations.

The following functional form is used to predict the
model parameters, and is motivated in part by functions used
in modern GMPEs

Y � α� β1M � β2 ln�M� � β3 exp�M� � β4�Rhyp − Rrup�

� β5 ln�
��������������������
R2
rup � h2

q
� � β6 ln�VS30� � η� δ; �27�

in which Y is the natural logarithm of a model parameter (ex-
cept for the case of correlation, for which Y � ρ0), and η and
δ are intra- and interevent residuals, respectively. The param-
eters α and βi are regression coefficients to be estimated.
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Northridge California earthquake at LABSN Station 00003
Northridge–17645 Saticoy Street (a) and (b) acceleration (g), and
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Figure 5. Recorded and simulated ground motion of the 1994
Northridge California earthquake at CGS–CSMIP Station 25091
Santa Barbara–UCSB Goleta (a) and (b) acceleration (g), and
(c) and (d) velocity (cm=s) for recorded and simulated ground
motion, respectively.
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The parameter h is assigned to avoid predicting
extremely large values of Y for small values of Rrup, and
is determined by minimizing the mean square error of the
regression predictions. With this functional form, Rrup pre-
dicts the attenuation of the motion with distance. The second
distance parameter, Rhyp, only appears as a difference of dis-
tances, Rhyp − Rrup, which is a proxy for the rupture length
between the hypocenter and the site. The Rhyp − Rrup term
does not predict attenuation of ground motion, and the
use of the difference between these distance metrics avoids
numerical problems caused by Rhyp and Rrup being correlated
for a given ground motion. More detailed discussion of the
motivation for this functional form, its physical interpreta-
tion, and its implications at the boundaries of the observed
data, is provided in Yamamoto and Baker (2011).

Three functional forms for magnitude scaling are em-
ployed in the general regression equation, though only some
of them are used depending upon the particular model
parameter being considered. For the model parameters re-
lated to the characteristics in the time domain, exp�M� is
used as it was observed to be consistent with the empirical
data for those parameters. The linear M term is used for the
model parameters related to the characteristics in the fre-
quency domain, and is motivated by the relationship between
magnitude and corner frequency fc (Brune, 1970), which de-
termines the frequency characteristics of the fault rupture.
Also, M is used for prediction of E�a� and Eacc, based on
the relationship between magnitude and seismic moment
(Kanamori, 1977), which is a measure of energy released
by the rupture. The logarithmic ln�M� term is also employed
for prediction of E�a� and Eacc, because these parameters
saturate at large magnitudes.

The uncertainty terms, η and δ, are normally distributed,
with mean zero and standard deviations of τ and σ, and they
are assumed to be independent for each ground motion
(though they are correlated between parameters for a given

ground motion). Therefore, standard deviation of total
residual term σ� is defined as follows:

σ� �
����������������
τ2 � σ2

p
: �28�

With this general functional form, regression analysis
was then performed to predict each of the 13 model param-
eters for each of the 1408 ground motions. After an initial
regression analysis, statistically insignificant predictor vari-
ables were removed from the function and regression was
rerun. A number of regression diagnostic tests were also per-
formed to verify the reasonableness of the functional forms,
the potential value of additional predictor variables, and the
normality of the residual terms. After refinement of the
model, the resulting regression coefficients are shown in
Table 1, and the correlations of total residuals for each pair
of parameters are shown in Table 2. Regression coefficients
that are not used for each model parameter are set to N/A in
Table 1. The model parameters are correlated through the
intra- and interevent residuals because the model parameters
computed from recorded ground motions are jointly affected
by factors not fully accounted for by the proposed regres-
sion model.

The signs and amplitudes of the regression coefficients
are generally consistent with seismology theory and empiri-
cal observations of ground-motion properties. A few exam-
ples are provided here to illustrate these consistencies. For
the parameters related to time-axis properties, values of β3
are positive, because earthquakes with large magnitudes have
longer durations and thus also later temporal centroids.
Values of β5 are also positive for the time-axis parameters,
because waves propagating over long distances have scat-
tered arrivals and include indirect waves as well as direct
waves, leading to increased durations. Similarly, soft soils
tend to increase durations, leading to negative coefficients
for β6 for the time-axis parameters. The regression coeffi-
cients for β4 are negative for these parameters because large

Table 1
Coefficients of the Prediction Equation

β1 β2 β3 β4 β5 β6
Parameter to be

Predicted α M ln�M� exp�M� Rhyp − Rrup ln�
��������������������
R2
rup � h2

q
� ln�VS30� h σ τ σ�

E�t�min 2.64 N/A N/A 0.0004 −0.001 0.22 −0.16 1 0.18 0.21 0.28
S�t�min 3.06 N/A N/A 0.0004 −0.005 0.11 −0.17 1 0.21 0.23 0.31
E�f�min 1.29 −0.14 N/A N/A −0.004 −0.23 0.36 10 0.35 0.26 0.44
S�f�min 1.48 −0.005 N/A N/A −0.003 −0.29 0.24 10 0.40 0.29 0.49
ρ0�t; f�min −0.36 0.01 N/A N/A −0.00056 −0.03 0.04 10 0.06 0.03 0.06
E�t�maj 1.95 N/A N/A 0.0006 −0.002 0.34 −0.20 1 0.27 0.30 0.40
S�t�maj 1.82 N/A N/A 0.0006 −0.006 0.22 −0.20 1 0.34 0.33 0.48
E�f�maj 0.81 −0.26 N/A N/A −0.004 −0.16 0.44 10 0.41 0.26 0.48
S�f�maj 0.14 −0.12 N/A N/A −0.002 −0.24 0.39 10 0.56 0.37 0.68
ρ0�t; f�maj −0.54 0.01 N/A N/A −0.00008 −0.08 0.09 10 0.21 0.07 0.22
E�a�maj −38.02 −4.52 37.30 N/A N/A −1.74 −0.94 10 1.13 0.71 1.33
Eacc −27.4 −2.58 27.00 N/A N/A −1.61 −0.88 10 0.85 0.46 0.96
S�ξ� 1.29 N/A N/A N/A N/A N/A N/A N/A 0.07 N/A 0.07
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values of Rhyp − Rrup are associated with forward directivity,
leading to shorter durations.

For the parameters related to the frequency axis, values
of β1 are negative, because earthquakes with large magni-
tudes have low corner frequencies (Brune, 1970). The effect
of magnitude is stronger for E�f� than S�f�, as expected.
Values of β5 are negative because longer wave propagation
distance reduces E�f� and S�f� as high-frequency ground-
motion components attenuate more quickly with distance
than low-frequency components. β4 is negative for E�f� be-
cause a greater difference between hypocentral distance and
rupture distance is associated with forward directivity (Boat-
wright and Boore, 1982). β6 is positive for E�f� and S�f�
because the natural frequency of stiff soil is higher than that
of soft soil, and stiff soils tend to produce more broadband
motions.

For the time-frequency nonstationarity term ρ0�t; f�, β5
is negative because with increasing distance the higher-
frequency components of ground motions arrive earlier than
the lower-frequency components, and because the later-
arriving indirect waves have less high-frequency energy
due to attenuation. These factors result in greater nonstatio-
narity, as reflected by a larger amplitude (i.e., more nega-
tive) ρ0�t; f�.

The mean energy Eacc decreases with distance due to
attenuation, as illustrated in Figure 6a, and increases for
small VS30 due to site amplification. Also, Eacc increases with

magnitude and saturates at large magnitudes, as seen in
Figure 6b. The trend of E�a�maj is the same as that of Eacc.
Additional related results and documentation of the regres-
sion analysis is provided in Yamamoto and Baker (2011).

Comparison of Simulation Results with GMPEs

Simulated ground motions generated by the proposed
model are next compared with the properties of recorded
ground motions as predicted by existing GMPEs. The 5%-
damped spectral accelerations (Sa) of the simulated ground
motions are comparedwith those fromNGAGMPEs calibrated
using similar data to that used here (Abrahamson and Silva,
2008 [AS08]; Boore and Atkinson, 2008 [BA08]; Campbell
and Bozorgnia, 2008 [CB08]; Chiou and Youngs, 2008
[CY08]; Idriss, 2008 [I08]). The residuals (ε) of recorded
groundmotions are studied to determinewhether they are nor-
mally distributed by Jayaram and Baker (2008) and the inter-
period correlations of the ε’s are comparedwith predictions by
Baker and Jayaram (2008). Selected additional comparisons
of this type for Arias intensity, mean period, and significant
duration are also shown.

The 5%-damped spectral accelerations are predicted
directly by GMPEs, whereas the model proposed here pre-
dicts time series and the Sa values are only an indirect result
of the simulated motions. Therefore, the proposed model
cannot be directly calibrated to produce Sa values consistent
with recordings. Despite this difficulty with calibrating the
proposed model, realistic Sa values must be produced in or-
der for the model to be considered validated.

To evaluate the proposed regression equations and
resulting simulations, 300 simulated ground motions are
computed for each magnitude, distance, and site condition
of interest, and their Sa values are computed and compared
with the values predicted by GMPEs for the same condition.

In this paper, response-spectra comparisons are per-
formed for vertical strike-slip faults under a variety of earth-
quake magnitudes, distances, and site conditions. The NGA
models include additional predictor variables other than
those used by the model proposed here, so to facilitate

Table 2
Correlation of Total Residuals

Parameter E�t�min S�t�min E�f�min S�f�min ρ0�t; f�min E�t�maj S�t�maj E�f�maj S�f�maj ρ0�t; f�maj E�a�maj Eacc

E�t�min 1.00 0.86 −0.24 −0.05 −0.43 0.88 0.69 −0.33 −0.13 −0.24 −0.32 −0.14
S�t�min 0.86 1.00 −0.17 0.02 −0.43 0.66 0.74 −0.26 −0.04 −0.25 −0.41 −0.22
E�f�min −0.24 −0.17 1.00 0.86 0.17 −0.19 −0.09 0.88 0.83 0.09 −0.36 −0.15
S�f�min −0.05 0.02 0.86 1.00 −0.01 −0.03 0.08 0.67 0.81 −0.05 −0.47 −0.26
ρ0�t; f�min −0.43 −0.43 0.17 −0.01 1.00 −0.33 −0.35 0.19 −0.01 0.56 0.14 0.06
E�t�maj 0.88 0.66 −0.19 −0.03 −0.33 1.00 0.69 −0.30 −0.13 −0.26 −0.29 −0.16
S�t�maj 0.69 0.74 −0.09 0.08 −0.35 0.69 1.00 −0.21 0.02 −0.28 −0.46 −0.29
E�f�maj −0.33 −0.26 0.88 0.67 0.19 −0.30 −0.21 1.00 0.83 0.11 −0.28 −0.09
S�f�maj −0.13 −0.04 0.83 0.81 −0.01 −0.13 0.02 0.83 1.00 −0.05 −0.49 −0.23
ρ0�t; f�maj −0.24 −0.25 0.09 −0.05 0.56 −0.26 −0.28 0.11 −0.05 1.00 0.14 0.08
E�a�maj −0.32 −0.41 −0.36 −0.47 0.14 −0.29 −0.46 −0.28 −0.49 0.14 1.00 0.87
Eacc 0.14 0.22 0.15 0.26 0.06 0.16 0.29 0.09 0.23 0.08 0.87 1.00
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Figure 6. Median prediction of regression analysis (a) intrae-
vent component of Eacc, (b) interevent component of Eacc.
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comparisons with the NGA predictions we use a depth-to-
top-of-rupture (Ztor) of 6 km for M 5, 3 km for M 6,
1 km for M 7, and 0 km for M 8 based on the recommen-
dation of Abrahamson et al. (2008), and Rrup is defined by
the depth-to-top-of-rupture and RJB as follows:

Rrup �
����������������������
R2
JB � Z2

tor

q
: �29�

Z1:0 values are inferred from VS30 using the suggested ap-
proaches by individual models. Z1:0 for AS08 are from Abra-
hamson and Silva (2008), and Z1:0 for CY08 is defined using
the following equation from Chiou and Youngs (2008)

ln�Z1:0� � 28:5 −
3:82
8

ln�V8
S30 � 378:78�: �30�

Spectral Acceleration

The median response spectra forM 5, 6, 7, and 8 at sites
with RJB � 30 km and VS30 � 270 m=s are shown in
Figure 7. The Sa from the simulated ground motions reason-
ably match those from GMPEs, especially for M 6, 7, and 8,
which are likely to be of greatest engineering interest. The
logarithmic standard deviations of response spectra for the
same conditions as Figure 7 are shown in Figure 8. For
all cases, standard deviations from simulations are consistent
with GMPEs at short-to-moderate periods, but larger than
those from GMPEs at long periods.

The logarithmic standard deviations of Sa increase with
period in the simulations for all magnitudes. Careful study of
the simulations shows that the logarithmic standard devia-
tions start increasing at the peak period of the response spec-

trum, which is associated with the spectral centroid of the
wavelet packet coefficients in both the major and minor
groups. Sa at short periods has smaller logarithmic standard
deviations than at long periods because short period Sa is
controlled by peak amplitude based on the shape of the trans-
fer function. Additionally, we have uncertainty in the spectral
centroid, so the fluctuation of the peak period affects the log-
arithmic standard deviation of Sa around the peak of Sa.
Hence, at periods greater than the peak Sa, the logarithmic
standard deviations significantly increase with period.

A second explanation for this increase in standard
deviation is that the wavelet transform has limited period res-
olution at these long periods, due to its finite time-domain res-
olution. These large standard deviations of ln Sa at long
periods are a weakness of the proposed stochastic model.
Although the problem is most severe at long periods for
small-magnitude earthquakes, which are of less engineering
interest, the problem is still somewhat present for large-
magnitude earthquakes. The limitations of the model ob-
served in Figures 7 and 8 will be used to constrain the recom-
mended range of applicability of themodel, as discussed later.

Correlation of Epsilon

The residual of ln Sa from the mean prediction (ε) is
defined by the following equation:

ε�T� � ln Sa�T� − μln Sa�T��M;R; T�
σln Sa�T�

; �31�

in which Sa is the spectral acceleration observed from a
ground motion, μln Sa is the mean predicted logarithmic spec-
tral acceleration, and σln Sa is the logarithmic standard
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deviation of the spectral acceleration. This ε is an implicit
indicator of the shape of the response spectrum, and corre-
lations between ε at differing periods can be used to quantify
the “bumpiness” of the spectrum (Baker and Cornell, 2005).

Correlation of ε at different periods, as observed from
recorded ground motions, are modeled by, for example,
Baker and Jayaram (2008). Figure 9 shows contours of cor-
relations of ε from our simulations and those from Baker and
Jayaram (2008), and the two are seen to match closely. One
of the reasons for this good agreement is the WPT approach
that we are using for our model. The kernel function of the
wavelet packet is localized in a range of time and frequency,
and therefore, the response spectrum of the kernel function is
also localized in a narrow range of periods. Hence, correla-
tions of ε in different periods with small period differences
are high and they decrease as the period difference increases.
Some other methods for stochastic simulation of ground
motions are known to not reproduce the correlations of
ε’s observed in real ground motions (Tothong and Cornell,
2007; Sadeghi et al., 2011), so the ability of this approach to
do so is a very positive feature.

Other Parameters

Inelastic response spectra are computed forM 7, vertical
strike-slip fault, and VS30 � 270 m=s for Joyner–Boore dis-
tances ranging from 1 to 100 km. The inelastic response
spectrum here is defined as Fy=W (where Fy is the yield
strength andW is the weight of the single degree-of-freedom
system), and is computed for elastic-perfectly-plastic sys-
tems with 5% viscous damping ratio and ductility ratio μ �
8 (Chopra, 2007). Figure 10 shows the median and logarith-
mic standard deviation of Fy=W, for both the ground
motions produced by our model and the predictions from
Bozorgnia et al. (2010). The results from our simulations
match well with those from Bozorgnia et al. (2010), except
for the T � 3 s results at small distances from the rupture.
This discrepancy occurs in part because the wavelet packets
at low frequencies have low resolution in the frequency do-
main, and so the fluctuation of the amplitude and frequency

of wavelet packets at long periods causes large variations in
inelastic responses.

The parameters such as Arias intensity (Ia, Arias, 1970),
mean period (Tm, Rathje et al. 2004), and significant dura-
tion (t5−95, Trifunac and Brady, 1976) are computed for an
M 7, vertical strike-slip fault with VS30 � 270 m=s, and
1 ≤ Rrup ≤ 100 km. Figure 11 shows the medians and loga-
rithmic standard deviations of t95, Tm, Ia observed from the
simulations and predicted by corresponding GMPEs. All of
these parameters from the simulations reasonably match
those from GMPE predictions.

Conclusions

This paper documented the construction of a stochastic
ground-motion model with time-frequency nonstationarity
based on the WPT. The time- and frequency-varying proper-
ties of real ground motions are modeled using wavelet packet
coefficients, and the proposed model requires 13 parameters
to describe a given ground motion. These 13 model param-
eters are then related to seismological variables such as earth-
quake magnitude and distance, through a two-stage
regression analysis that captures trends in mean values, var-
iabilities, and correlations of these parameters observed in a
large database of recorded strong ground motions.

The proposed model has the following advantages:
(a) the temporal and the spectral nonstationarity of the simu-
lated motions can be fully controlled by adjusting the model
parameters, (b) the model is empirically calibrated and pro-
duces motions that are consistent with observed ground-
motion recordings in terms of properties of engineering in-
terest, and (c) the procedure is computationally inexpensive
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(1000 simulations per hour can be produced on a standard
desktop PC), so obtaining large numbers of ground motions
is relatively fast.

The characteristics of the resulting simulated ground
motions were examined by comparing elastic and inelastic
spectral acceleration values, Arias intensity, mean period,
and significant duration observed in simulated ground mo-
tions with comparable predictions from GMPEs. The proper-
ties of the simulations were observed to reasonably match
those from GMPEs for 6 ≤ M ≤ 8, 220 ≤ VS30 ≤ 760 m=s,
1 ≤ Rrup ≤ 100 km, 0:01 ≤ T ≤ 3 s, and vertical strike-slip
faulting.

Furthermore, the characteristics of the prediction errors
of Sa (i.e., ε) were examined. The characteristics of ε are
related to the probabilistic characteristics of the spectral
shape of ground motions. The prediction errors ε from sim-
ulations were seen to be normally distributed (as is also the
case with recorded ground motions) and have correlations
that are consistent with an existing empirical model cali-
brated from recordings.

While the simulated ground motions were observed to
be reasonable over the range of conditions described above,
there are some unresolved modeling issues that if improved
could potentially increase the circumstances under which the
simulations can be viewed as realistic. The proposed regres-
sion model has only four predictors: moment magnitude,
hypocentral distance, rupture distance, and VS30. For future

improvement, we could consider including additional predic-
tors such as rupture mechanism and depth to bedrock. Initial
regression models considered did not indicate a statistically
significant trend with any of these parameters, but their ef-
fectiveness in other GMPEs suggests that they may be useful
predictors. The functional form used for regression was also
kept relatively simple for practical purposes. For example,
the parameter h employed in the proposed regression model
controls saturation of each parameter in the near fault region.
In the current model, h is constant for a given model param-
eter, but the model could be modified so h is a function of
magnitude (because h is related to the area of the fault).
Additionally, there are some weaknesses of the model with
regard to long period energy, as was seen in plots of standard
deviations of long period response spectra. This is in part an
inherent limitation of any procedure that attempts to model
long period energy in a finite-length signal, due to inherent
limitations on time and frequency resolution in signal
processing. Nonetheless, opportunities for incremental fur-
ther improvements likely remain. Alternatively, the proposed
procedure could be used to generate only the high-frequency
components of ground motion, in a hybrid simulation that
relied on physics-based simulations for low-frequency
ground motion (e.g., Graves and Pitarka, 2010).

Despite some limitations, the ease of use of this pro-
cedure and general consistency of a number of properties
of these simulations with comparable predictions of those
properties by empirical prediction equations suggests that
the simulations are suitable for probabilistic seismic-hazard
analysis and perhaps nonlinear dynamic structural analysis.

Data and Resources

The recorded ground motions for the regression analysis
come from the NGA database (Chiou et al., 2008). The sto-
chastic model described in this paper has been implemented
in the MATLAB programming environment using the
MATLAB Wavelet Toolbox. To supplement the documenta-
tion provided by this paper, the source code is available at
www.stanford.edu/~bakerjw/gm_simulation.html (last ac-
cessed March 2013). The website also contains further de-
tailed documentation such as regression coefficients, a table of
earthquake ground motions used in regression analysis, and
other relevant information for the validation of the model.
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