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a b s t r a c t

The objectives of this work are to quantify the influence of material and operational uncertainties on the
performance of self-adaptive marine rotors, and to develop a reliability-based design and optimization
methodology for adaptive marine structures. Using a previously validated 3D fluid–structure interaction
model, performance functions are obtained and used to generate characteristic response surfaces. A first-
order reliability method is used to evaluate the influence of uncertainties in material and load parameters
and thus optimize the design parameters. The results demonstrate the viability of the proposed reliabil-
ity-based design and optimization methodology, and demonstrate that a probabilistic approach is more
appropriate than a deterministic approach for the design and optimization of adaptive marine structures
that rely on fluid–structure interaction for performance improvement.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Self-adaptive structures are those which change in shape or
property via active and/or passive control mechanisms to automat-
ically adjust to the changing environment. Active, passive, and hy-
brid control mechanisms have been exploited to achieve adaptive/
intelligent/smart designs. Among the passive control mecha-
nisms, one important class involves the use of fluid–structure
interactions.

In aerospace engineering, utilization of fluid–structure interac-
tions for performance enhancement has been well documented.
In Khan [1], aeroelastic behaviors of composite helicopter blades
were investigated to improve propeller performance, including
thrust, power, and efficiency. Studies have also shown that aero-
elastic tailoring and optimization of composite helicopter blades
can improve stability, reduce vibration, and reduce hub and dy-
namic blade loads [2–6]. In Yang [7], fluid–structure interaction
analysis was performed for a composite canard structure, where
the possibility of achieving higher efficiency and better maneuver-
ability was numerically demonstrated. Passive control technolo-
gies have also been considered for wind turbines, where material
load–deformation coupling was used to reduce fatigue damage
through load-mitigation at high winds (see Refs. Lee and Flay [8],
Lobitz et al. [9]), and to improve energy capture (see Ref. Lobitz
and Veers [10]).

In marine and ocean engineering, investigations into methodol-
ogies that utilize fluid–structure interactions have also been on the

rise. In Gowing et al. [11], experimental studies demonstrated that
load-induced deformations of composite elliptic hydrofoils helped
to delay cavitation inception, while maintaining the overall lift and
drag. Numerical [12–17] and experimental [18] studies have also
shown that passive pitch adjustments through the use of aniso-
tropic laminated composites helped to increase the fuel-efficiency
of marine propellers over a range of operating conditions. Similar
passive pitch adjustment strategies have also been explored to in-
crease the energy capture of marine/current turbines in Nicholls-
Lee and Turnock [19].

The focus of the current work is on passive, self-adaptive mar-
ine structures that utilize fluid–structure interactions. Because
the performance of these structures depends on fluid–structure
interactions, they may be more sensitive to random variations in
material and load uncertainties. Hence, the objective of this work
is to develop a reliability-based design and optimization methodol-
ogy to improve the performance and reliability of adaptive marine
structures. To demonstrate the methodology, results are shown for
a self-adaptive composite marine propeller, but the methodology is
generally applicable to other adaptive structures that undergo
fluid–structure interaction.

1.1. Reliability-based design and optimization of self-adaptive
structures

Reliability-based design and optimization is a common practice
for many rigid and/or non-adaptive structural engineering sys-
tems. The objective is to ensure the level of required reliability is
achieved with respect to uncertainties in structural parameters
and operating conditions.
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Although much progress in this field has been made for rigid
and/or non-adaptive structures (see [20] for a recent review in this
area), relatively little work focuses on flexible structures that inter-
act with the environment. Reviews of the state-of-the art methods
in reliability-based design and optimization of aeroelastic struc-
tures can be found in [21]. As noted in [21], only limited work
has been done on reliability analysis of structures undergoing
fluid–structure interactions, and most existing methods employed
simplistic linear fluid and fluid–structure interaction models to
determine the mechanical response, which introduce epistemic
modeling uncertainty. Hence, [21] introduced a reliability analysis
method that integrates a coupled Euler flow solver with a struc-
tural finite element model (FEM) for the deterministic aeroelastic
analysis of a 3D wing structure, and employed a first-order reliabil-
ity method (FORM) to evaluate the performance sensitivities to de-
sign parameters, operating conditions, and modeling uncertainties.
A probabilistic design assessment of smart composite structures is
presented in [22] in which sensitivity factors were developed for a
series of design parameters for a composite wing based on their ef-
fects on the angle of attack and impact response of the structure.
By improving the reliability of design parameters with the highest
sensitivity factors, the failure probability was reduced for the
structure. The stochastic nature of composite properties has also
been shown to lead to overestimation of structural reliability. By
using a probabilistic design methodology, improvements can be
made over traditional deterministic design methods [23]. In [24],
the reliability of a thin-walled circular composite cylinder was
shown to have a strong sensitivity to the applied load and to the
amount of parametric scatter via multiple response surface
techniques.

It should be noted that all of the above mentioned reliability-
based design and optimization methods focus on adaptive/smart
aerospace structures. Similar work is also needed for adaptive mar-
ine structures, where the fluid loading tends to be much higher
(due to the higher fluid density and viscosity), the flow may be
highly unsteady (due to transient structural motion, as well as spa-
tial and temporal variations in the flow field), and may be suscep-
tible to cavitation damage.

1.2. Objectives

The objectives of this work are to (1) quantify the influence of
material and load uncertainties on the performance of self-adap-
tive marine structures and (2) optimize the design to achieve the
desired level of reliability in structural performance and, in doing
so, develop a reliability-based design and optimization method
for adaptive marine structures.

2. Self-adaptive composite marine propellers

Marine propellers are traditionally made of nickel–aluminum–
bronze (NAB) due to its excellent stiffness, yield strength, and
anti-biofouling characteristics. They are designed to be rigid, and
the blade geometry is optimized to yield the maximum efficiency
at the design flow condition. However, when the advance speed
or the shaft rotational frequency moves away from the design val-
ues, the blade geometry becomes sub-optimal relative to the chan-
ged inflow, and hence leads to decreases in energy efficiency. The
effect is more severe when a rigid propeller is operating behind
an asymmetric wake (caused by interactions with the upstream
hull, inclined shaft, ship maneuvering, etc.) because the resultant
inflow angle will vary periodically with blade position. Conse-
quently, the efficiency of a rigid propeller tends to decrease when
operating behind spatially varying wake. This problem can be min-
imized by using blades made of carbon fiber reinforced plastics

(CFRP). In addition to the well-known higher specific stiffness
and higher specific strength of CFRP, the intrinsic deformation cou-
pling behavior of anisotropic composites can be utilized to improve
the propeller performance by passive tailoring of the load-induced
deformations according to the changing inflow, as demonstrated in
recent numerical (see Lee and Lin [12], Lin and Lee [13], Young
et al. [14], Young and Liu [15], Young [16], Motley et al. [17]) and
experimental (see Chen et al. [18]) studies. Nevertheless, all of
the work thus far on self-adaptive composite marine propellers
has been limited to deterministic analysis. Since the performance
of these structures is more sensitive to material or load uncertain-
ties due to their dependence on fluid–structure interaction, a reli-
ability-based design and optimization method that can consider
natural or man-made variations is needed.

3. Problem definition

To perform a reliability-based evaluation of the structure, we
will need to evaluate two performance measures. First, we must
find the probability of unsatisfactory performance. This is done by
defining a limit state function, gðXÞ, where X consists of a vector
of design variables, XD, either deterministic or random, and a vector
of random variables, XR , representing uncertain structural proper-
ties and loading conditions, and gðÞ is a function that relates the de-
sign variables, random variables and the performance of the
structure. The function gðXÞ can either be implicit (e.g., the outcome
of a numerical BEM–FEM code), or explicit (e.g., an approximate
equation obtained using the response surface method). The func-
tion gðXÞ is chosen such that gðXÞ ¼ 0 defines a boundary between
satisfactory and unsatisfactory performance (with gðXÞ < 0 indicat-
ing that the structure has unacceptable performance, and gðXÞ > 0
indicating acceptable performance). The performance state associ-
ated with the boundary gðXÞ ¼ 0 is denoted as a ‘‘limit state”. Given
this formulation, the optimization problem herein can be written as

max
XD

½pðgobjðXÞ > 0Þ� ð1Þ

or min
XD

½pðgobjðXÞ 6 0Þ�

where gobjðXÞ is the objective function, based on the efficiency ðgÞ of
the adaptive composite propeller, which is required to be greater
than a minimum target efficiency for all loading conditions, �g:

gobjðXÞ ¼ gðXÞ � �g ð2Þ

subject to two probabilistic limit state functions gprob
1 and gprob

2 .

gprob
j ¼ pfj � pðgfjðXÞ < 0ÞP 0; j ¼ 1;2 ð3Þ

where the constraint functions gfj are defined as

gf 1ðXÞ ¼ 1� PSTðXÞ
PrigidðJÞ

ð4Þ

gf 2ðXÞ ¼
Dmax

D
� DðXÞ

D
ð5Þ

subject to an acceptable probability of failure, pf ¼ ½pf 1 pf 2�
T . We de-

note gðXÞ as the efficiency of the self-twisting propeller. PSTðXÞ and
PrigidðJÞ represent the power demand of the self-twisting and rigid
propellers, respectively. Note here that the performance of the rigid
propeller is a function of the loading condition represented by the
advance coefficient J ¼ V=nD (ratio of mean relative inflow velocity
to rotor tip velocity) only because the objective is to optimize the
design variables for the self-twisting propeller such that it yields
equal or better performance compared to the already optimized ri-
gid propeller. The rigid propeller is only used as a reference to eval-
uate the performance of the adaptive propeller. It should be noted
here that V is the propeller advance speed, D is the propeller diam-
eter, and n is the propeller rotational frequency.
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In the application considered here, the vector of random vari-
ables is defined as XR ¼ ½J; E1; E2; G12; m12; m21�T . For the sake of sim-
plicity, the blades are assumed to be made of a single layer of
orthotropic lamina with material properties E1; E2; G12; m12; and
m21 and the fibers are oriented at angle h counterclockwise relative
to the local spanwise direction. Again for simplicity, the only de-
sign variable considered is the fiber orientation angle, XD ¼ h.
The objective of the optimization problem is to find the best fiber
orientation angle, h, that maximizes the overall efficiency of the
self-twisting propeller, as represented by Eq. (2), subject to design
constraints represented by Eqs. (4) and (5).

Eq. (4) is used to ensure that the expected average power de-
mand of the self-twisting propeller is less than that of the rigid
propeller, which will guarantee that the self-twisting propeller
provides higher averaged energy efficiency. Further, we define
DðXÞ

D as the blade tip deflection ðDÞ normalized by the propeller
diameter (D), a parameter which is limited by the maximum allow-
able normalized blade tip deflection Dmax

D

� �
. The blade tip deflection

needs to be restrained to limit the possibility of blade strength and
stiffness failures. It should be noted that composite blades made of
CFRP can have many possible material failure modes, as well as
hydroelastic instability failure modes, most of which can be corre-
lated to the tip deflections. As such, the tip deflection, Eq. (5), de-
fines the safety limit to ensure structural stability and integrity.
Eq. (4) is used to represent the serviceability limit because its
objective is to minimize power demand. Eqs. (4) and (5) limit the
optimal design range and the objective function (Eq. (2)) is used
to find the fiber orientation angle that maximizes the probability
of exceeding the minimum target energy efficiency of the self-
twisting propeller.

4. Fluid–structure interaction analysis method

The numerical modeling involves a deformable composite pro-
peller subjected to a spatially varying inflow wake VE. The model
has been validated against analytical, numerical, and experimental
results [14,25,15,16].

The governing equation for the fluid is the incompressible Euler
equation in a blade-fixed rotating coordinate system:

DVt=Dt ¼ �rp=qþ g�X� ðX� xÞ � 2X� Vt

r � Vt ¼ 0 ð6Þ

where Vt is the total velocity, t is the physical time, p is the hydro-
dynamic pressure, q is the water density, g is the gravitational
acceleration, and X is the propeller rotational speed vector. The to-
tal velocity ðVtÞ can be expressed as the sum of the inflow velocity
ðVinÞ and a perturbation potential velocity ðrUÞ where the inflow
velocity can be decomposed into the effective wake velocity ðVeÞ
and the blade rotational velocity: Vin ¼ Ve �X� x. The effective
wake velocity Ve is obtained either from experimental measure-
ments [26] or from a coupled RANS/Euler and potential flow solver
[27]. It includes the interaction between the nominal wake vorticity
(in the absence of the propeller) and the vorticity induced by the
propeller [27]. The perturbation flow field can be treated as incom-
pressible, inviscid, and irrotational. Hence, it satisfies the Laplace
equation: 52U ¼ 0. Further, the perturbation potential U can be
decomposed into two parts, namely, /, which is due to rigid blade
rotation, and u, which is due to elastic blade deformation. Both /
and u can be formulated as a mixed boundary value problem in
the time-domain and solved using a 3D boundary element method
(BEM) [25,16].

By virtue of the previous decomposition, the finite element dis-
cretization for structural analysis in the rotating blade-fixed coor-
dinate system can be formulated as follows:

ð½M� þ ½MH�Þf€ug þ ð½C� þ ½CH�Þf _ug þ ½K�fug
¼ fFceg þ fFcog þ fFrg ð7Þ

where f€ug; f _ug, and fug are the structural nodal acceleration,
velocity, and displacement vectors, respectively; ½M�; ½C�, and ½K�
are the structural mass, damping, and stiffness matrices, respec-
tively; ½MH� and ½CH� are called the hydrodynamic added mass and
hydrodynamic damping matrices, respectively, because ½MH� is
associated with f€ug and ½CH� is associated with f _ug. Notice that
fFvg ¼ �½MH�f€ug � ½CH�f _ug represents the dynamic hydroelastic
force caused by fluid–structure interaction, and can be derived by
application of the pressure and velocity compatibility conditions
at the blade surface [25,16]. fFceg; fFcog, and fFrg are the centrifugal
force, the Coriolis force, and the hydrodynamic force (due to rigid
blades rotation) vectors, respectively. Detailed formulation of these
matrix identities can be found in [25,16]. Eq. (7) can be solved using
standard finite element methods (FEM) in the time-domain such as
ABAQUS/Standard [28]. User-developed subroutines are utilized to
superimpose the hydrodynamic added mass matrix ½MH� with the
structural mass matrix ½M�, and the hydrodynamic damping matrix
½CH� with the structural damping matrix ½C�, and to perform itera-
tions between the BEM and FEM solvers to consider nonlinear FSI
effects induced by large blade deformations.

5. Problem setup

The propeller herein is modeled using a single layer for simplic-
ity, but the actual model will have many layers and will be stacked
in a sequence such that the load–deformation characteristics will
be the same as the effective single layer model [29]. However, it
should be cautioned that such simplification is only appropriate
to determine the load–deformation characteristics for linear-elas-
tic structural systems. Detailed stress analysis using the actual
multi-layer model should be performed after the hydroelastic opti-
mization analysis to verify structural integrity.

The material selected is Hexcel IM7-8552 carbon epoxy com-
posite. The mean-load geometry is based on that of propeller
5474 (Fig. 1), one of the composite propellers manufactured by
AIR Fertigung-Technologie GmbH and designed and tested in coop-
eration with the Naval Surface Warfare Center, Carderock Division
(NSWCCD). The propeller has a diameter of D ¼ 0:6096 m. The de-
sign rotational frequency is n ¼ 780 rpm. The design advance coef-
ficient is J ¼ V=nD ¼ 0:66. More details of propeller 5474 can be
found in [18,15].

undeformed

deformed

Fig. 1. Deformed and undeformed geometry of the self-twisting propeller.
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Fig. 2 compares the performance of the adaptive self-twisting
propeller with its rigid counterpart based on deterministic fluid–
structure interaction analysis using the method outlined in Section
4. As shown in the left plot, the adaptable propeller geometry (rep-
resented by the tip pitch angle, /tip) approaches the theoretical
optimal propeller geometry, which changes with the advance coef-
ficient (J is inversely proportional to the angle of attack). For the
possible range of J values for forward operations, the self-twisting
propeller is designed to be overpitched in its unloaded (unde-
formed) configuration. The self-twisting propeller de-pitches due
to twisting motion induced by bending deformation caused by
the fluid loading, which changes with J (operating condition). The
design requirements are that:

1. At J ¼ Jdesign ¼ 0:66, the deformed geometry of the self-twisting
propeller matches the optimized rigid propeller geometry to
achieve equivalent performance between the two propellers.

2. At all J – Jdesign, the self-twisting propeller should yield higher
energy efficiency than its rigid counterpart.

The efficiency is defined as g ¼ TV=2pnQ ¼ JKT=ð2pKQ Þ which
corresponds to the ratio of the thrust power to the available shaft
power, with thrust coefficient KT ¼ T=qn2D4 and torque coefficient
KQ ¼ Q=qn2D5. T and Q are the dimensional thrust and torque,
respectively. As shown in Fig. 2, the rigid and the self-twisting pro-
pellers exhibit similar performance at the design condition
J ¼ 0:66. The efficiency of the self-twisting propeller is higher than
its rigid counterpart for all J – 0:66. The efficiency improvement
increases as the flow condition further deviates from the design
condition. Further, the resulting thrust and torque exhibit smooth-
er variation with changing J. The result is a propeller that is, on
average, more energy efficient than its rigid counterpart, requiring
less power to operate and less variation in power, which reduces
the strain and extends the fatigue life of the engine. For details
about the design procedure or fluid–structure interaction analysis
methodology, readers should refer to [14,30,16,17].

6. Parametric sensitivity for R

To further simplify the model, parametric sensitivity analyses of
the random variables XR were performed (see Figs. 3 and 4). By
taking each of the material parameters and providing them with
a normal distribution (i.e. with mean lðXRÞ ¼ XR;design ¼
½J; E1; E2;G12; m12; m21� ¼ ½0:66; 171:42 GPa; 9:08 GPa; 5:29 GPa;
0:32; 0:32� and standard deviation rðXRÞ ¼ 0:02l ðXRÞ based on

expected tolerances, the sensitivities to these variables can be as-
sessed. The material parameters were assigned extreme deviations
from the design values of three standard deviations (99.7% of the
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Fig. 3. Effect of variations in material properties on the blade tip deflection for the
self-twisting propeller.
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realizations of a normal distribution are within three standard
deviations of the distribution mean), and compared with the de-
sign condition (i.e. XR;design).

As shown in Figs. 3 and 4, the effects of variations in the primary
bending modulus ðE1Þ and shear modulus ðG12Þ are negligible.
Bounds for extreme values of the secondary bending modulus
ðE2Þ, however, noticeably deviate from the design behavior, partic-
ularly for large h. This is because at low values of h, the primary
stiffness is governed by E1 ¼ 171:42 GPa, which is a much larger
value compared to E2 ¼ 9:08 GPa. Hence, even at three standard
deviations from the mean ð161:13 GPa 6 E1 6 181:71 GPaÞ, the ef-
fects on the normalized bending deflection and power are small
due to the high stiffness. On the other hand, as h approaches 90�,
the primary bending stiffness of the blade is governed by ðE2Þ. Be-
cause E2 is comparatively small with respect to E1, the system
behavioral effects for variations in E2 are magnified, though only
marginally. For the purposes of this paper, however, it is assumed
that the material parameters, except for h, have negligible effect on
the efficiency, power requirement, and tip displacement of the pro-
peller blades. As such, the random variable vector XR can be simpli-
fied to only contain the advance coefficient, J.

7. Response surface methodology

The fully-coupled boundary element method-finite element
method (BEM–FEM) model [25,16] summarized in Section 4 is
used for the design and analysis of adaptive composite marine ro-
tors. Although the coupled BEM–FEM analysis method is relatively
fast, it can still be computationally expensive to use, with wait
time requirements ranging from 5 min to 2 h for a single simula-
tion on a single processor depending on if the analysis is steady,
unsteady, with or without cavitation. For a Monte Carlo analysis
large enough to successfully achieve a reliable optimization, this
becomes impractical. Since the behavior of the performance
(power, deflection, and efficiency) is expected to be smooth func-
tions of J and h, the response surface methodology is a reasonable
analysis alternative. Data points obtained from the BEM–FEM
model were used to predict the behavior of the self-twisting com-
posite propeller. By using a fully two-dimensional regression anal-
ysis, equations for the response surface of the self-twisting
propeller power requirement, tip deflection, and efficiency were
developed:

PSTðJ; hÞ ¼ 104Wð5:818� 0:104J � 0:0909h

þ 0:0516Jh� 4:020J2 þ 0:000772h2

þ 0:000361Jh2 � 0:0304J2h� 0:000330J2h2Þ ð8Þ
DðJ; hÞ

D
¼ 0:0060� 0:0010J þ 0:0019h

� 0:0013Jh� 0:0021J2 � 0:000006h2

þ 0:000005Jh2 � 0:00031J2h� 0:000001J2h2 ð9Þ
gðJ; hÞ ¼ �0:2358þ 2:2626J þ 0:0015hþ 0:0058Jh

� 1:3411J2 � 0:0001Jh2 � 0:0105J2hþ 0:0001J2h2 ð10Þ

where J is dimensionless, h is in degrees, and W represents units of
watts for the power surface. The goodness-of-fit of the surfaces can
be represented by the coefficients of determination for the power
demand, blade tip deflection, and efficiency, which are 0.997,
0.997, and 0.988, respectively, where

R2 ¼ 1� RðgBEM—FEM � �gBEM—FEMÞ2

RðgBEM—FEM � gðXÞÞ2
ð11Þ

where gBEM—FEM is the data obtained from the numerical BEM–FEM
model, �gBEM—FEM is the mean of all data obtained from the BEM–

FEM model, and gðXÞ is the data generated from the response sur-
face method; R2 values closer to 1.0 represent higher accuracy.

The contour maps of the fitted response surfaces and data com-
puted using the BEM–FEM numerical solver are shown in Figs. 5–7.
The shaded contour values represent the fitted equations, while
the dashed contour lines represent the BEM–FEM simulation data.

The power requirement is more sensitive to J than to h. Lower
values of J correspond to higher angles of attack and higher loads
and thereby higher power demands. At higher loads, the change
in pitch caused by the fluid–structure interaction is also greater,
and hence the power demand is more sensitive to h at lower J val-
ues. At high J values, the power demand is lower and is less sensi-
tive to h due to small changes in pitch caused by the hydrodynamic
load induced bending–twisting deformation.

The maximum deflection is a strong function of both J and h.
This is because, as the fiber orientation angle becomes larger, the
blades are less stiff along their primary (longitudinal) axis (which,
at h ¼ 45� becomes oriented more as the secondary axis). As a re-
sult, the blade tip deflections have nonlinear growth with fiber ori-
entation angle. The increasing of the tip deflection with decreasing
J is also expected due to increasing longitudinal load.

The efficiency is highest near the design values ðJ ¼ Jdesign ¼
0:66; h ¼ hdesign ¼ 32�Þ, which means that the original design
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objectives are satisfied. Note that the efficiency of the adaptive
composite propeller has a strong dependence on J, which is inver-
sely proportional to the angle of attack, but a weaker dependence
on h. It is of note, however, that there exists a quadratic element to
the behavior of the surface based on the fiber orientation angle.
This curvature switches directions at J ¼ 0:66 and the local maxi-
mum and minimum point is located at h ¼ hdesign, a characteristic
which the response surface takes into account. This change in cur-
vature can be explained by combining the behavior shown in Figs.
8 and 2. According to Fig. 8, for h > 32� and h < 32�, the change in
tip pitch angle, D/, will be less than D/jh¼hdesign¼32� . According to
Fig. 2, for J < Jdesign ¼ 0:66, if D/ < D/jhdesign

, the loaded pitch distri-
bution will be further away from the theoretical optimal value and
hence g < gjhdesign

; for J > Jdesign ¼ 0:66, if D/ < D/jhdesign
, the loaded

pitch distribution will be closer to the theoretical optimal value
and hence g > gjhdesign

.
The rigid propeller power requirement does not require re-

sponse surface methodology as it is only a function of J; however,
fitting a curve to define the behavior of the rigid propeller is also
faster than using the BEM model to compute the behavior at each
J value (FEM analysis is not necessary since the blades are assumed

to be rigid). Using polynomial fitting techniques, a second-order
curve was used to fit the data ðR2 ¼ 0:999Þ for the rigid propeller
(Fig. 9):

PrigidðJÞ ¼ 104Wð�38572J2 � 5091J þ 50416Þ ð12Þ

8. First-order reliability method

Eq. (1) defines the probability of unacceptable performance, and
computing this probability requires integration of the probability
density function of X over the domain of x values that would result
in unacceptable performance

pf ¼ pðgðXÞ < 0Þ ¼
Z

gðXÞ60
fXðxÞ dx ð13Þ

This integral in general involves a complex high-dimensional
failure domain and often cannot be performed analytically, as is
the case here. Thus, we turn to the first-order reliability method
(FORM), which facilitates an approximate solution of the integral
by transforming the random variables X into variables having a
multivariate standard normal density function, linearizing the lim-
it state function in this transformed domain, and then utilizing
analytical solutions to the transformed and linearized problem
[31].

In this application, the variables in X do not necessarily have
normal distributions, so we start by transforming each component
of the vector X, denoted Xi, to a corresponding standard normal
variable, denoted Ui. This transformation is performed by equating
the probability of non-exceedance of any numerical values of Xi

and Ui. This can be stated as follows:

UðuiÞ ¼ FXi
ðxiÞ ð14Þ

where U is the standard normal cumulative distribution function
(CDF) and FXi

is the CDF of the non-normal random variable Xi. If
the components of X are not mutually independent, a generaliza-
tion of Eq. (14) to use a Nataf or Rosenblatt transformation would
be needed to remove that dependence from U. But the calculations
here use only mutually independent random variables, so this com-
ponent-by-component transformation is sufficient.

The nonlinear limit state functions gðXÞ can be transformed into
a linear limit state space hðUÞ using this same transformation. We
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then proceed by taking advantage of the fact that pf ¼ pðgðXÞ 6
0Þ ¼ pðhðUÞ 6 0Þ:

pf ¼
Z

gðXÞ60
fXðxÞ dx ¼

Z
hðuÞ60

fuðuÞ du ð15Þ

This mapping of the problem from X-space to U-space is illus-
trated in Fig. 10. The latter integral can still not be solved
analytically, unless the limit state function hðUÞ is linear. We thus
linearize hðUÞ at the so-called design point u�, defined as
follows:

u� ¼ arg minðkUk jhðUÞ ¼ 0Þ ð16Þ

By this definition, u� is the point on the limit state surface
hðUÞ ¼ 0 closest to the origin in U-space, and thus has the highest
probability density of all points in the failure domain hðUÞ 6 0. This
high probability content means that linearizations of hðUÞ around
u� should produce pf estimates close to the pf estimates obtained
without this linearization. Once u� is known and the limit state
surface is linearized at this point, the reliability index b can be
computed as

b ¼ au� ð17Þ

where a is the unit normal vector perpendicular to the limit state
surface at u� and pointing into the failure domain

a ¼ � rhðu�Þ
krhðu�Þk ð18Þ

This reliability index is directly related to the probability of fail-
ure by the equation

pf ¼ Uð�bÞ ð19Þ

This pf is the FORM approximation of the pf associated with the
original non-normal random variables and nonlinear limit state
function. The variables u�; a and b are illustrated graphically in
Fig. 11. Several well-studied numerical algorithms for finding these
variables are available [31].

In addition to the probability of failure estimate, this FORM cal-
culation provides several other informative outputs. The elements
of the vector a provide information about the relative importance
of the random variables in U (and, after a simple transformation,
provides the same information about the original random variables
X). The design point u� can also be transformed (using the inverse
of the operation in Eq. (14)), to find a corresponding x�: the values
of X that have the highest probability of causing failure of the sys-
tem of interest.

9. Design example

9.1. Parameter definitions

A design example is presented based on the reliability and re-
sponse surface methodology explained above. The first step be-
yond the response surface methodology involves determining
how to define the random distribution of the variables. It is typical
for a manufacturer to provide a fiber orientation tolerance around
2—3� in the construction of the laminates for propeller or turbine
blades, with a confidence level of 95%. With this as a reference
point, it is reasonable to assume that the fiber orientation angle
has a Gaussian distribution with a mean value of hdesign. A tolerance
of 3� with 95% confidence can be approximated by a standard devi-
ation of 1:5� (for a normal distribution, 95% of values are within
two standard deviations of the mean).

Determining an appropriate distribution for the advance coeffi-
cient is slightly less intuitive. It can be assumed that the propeller
will operate near the design advance coefficient ðJdesign ¼ 0:66Þ un-
der most operating conditions and that this would be an appropri-
ate mean or mode value. A standard deviation of 0.10 (for normal
distribution) will provide a realistic range of operating conditions.
A normal distribution, however, may not be appropriate here.
Operating conditions are sensitive to many variables, including
currents, waves, ship acceleration and deceleration, turning and
towing. A log-normal distribution can be used to simulate a ran-
dom variable that is the product of many random variables. The
log-normal distribution tends more toward a positive skew (the
right tail is larger). However, surface vessels tend to favor a nega-
tive skew (the left tail is larger). More often than not, deviations
will occur at values lower than Jdesign because of towing or high
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wave resistance. As a result, the lower limit of J deviates more from
the mode than the higher limit, resulting in a negative skew. This
can be modeled using a Gumbel distribution, which can be gener-
ated by fixing the mode (the most frequent value) at Jdesign and lim-
iting the minimum value to J ¼ 0 (i.e. forward operations only).
This ensures that the most common value, the mode, of J is that
of the design condition. As shown in Fig. 12, all three distributions
– shown as both a probability density function (PDF) and cumula-
tive density function (CDF) – share the same mode, while the dis-
tribution away from the mode differs.

A second initial step is to define an acceptable maximum tip
deflection and minimum target efficiency. An inherent problem
of self-twisting propellers is that they can be subject to strength-
based failures, as well as hydroelastic instabilities and resonance
issues. As described in Section 3, by limiting the tip deflection
these issues can be avoided or minimized. Hence, the value
Dmax=D ¼ 0:05 is selected for this design example. Extending this
value too high can lead to static divergence (during deceleration
and backing, although not considered here), increased stresses,
and higher susceptibility to resonance. As seen in Fig. 13,
Dmax=D ¼ 0:05 provides a bound which limits the maximum von
Mises stress to approximately 500 MPa, where the tensile and
compressive fiber failure stresses for this material are 2300 and
1200 MPa, respectively. While matrix failure stresses may be an or-
der of magnitude less than fiber failure stresses, matrix failures are
generally shear based failures and the internal shear stresses tend
to also be an order of magnitude smaller than the primary axis

stresses. Further, the natural frequency limit is approximately
60 Hz, or 3600 rpm, which is about 4.6 times higher than the de-
sign propeller rotational frequency at n = 780 rpm.

The minimum target efficiency for all loading conditions is set
at �g ¼ 0:60 to ensure satisfactory performance. The serviceability
limit state is set at pf 1 ¼ 0:50 to maximize the probability that the
self-twisting propeller yields better performance (lower power de-
mand), on average, than its rigid counterpart. The safety limit state
is set at pf 2 ¼ 0:001 to limit the deflections to avoid strength or sta-
bility failure while allowing enough flexibility to enable perfor-
mance improvement through passive bend–twist coupling
induced by the hydrodynamic loads.

9.2. Validation studies

The FORM calculations of the previous section require an
approximation in that they linearize the limit state surface after
transforming the random variables affecting the structure perfor-
mance. This linearization typically has only a minor impact on
the computed failure probabilities, especially when the true failure
probability is small.

To verify that FORM did not introduce any significant errors in
this application, FORM and comparable Monte Carlo results are
compared. Monte Carlo pf estimates can be obtained by simulating
realizations of X having appropriate probability distributions, and
then counting the fraction of realizations for which the structure
has unacceptable performance. This approach produces pf esti-
mates that approach the true pf when the number of simulations
is large, because no restrictions are required on the permissible
distribution of X or on the form of the limit state surface. The
one approximation retained here is to use the response surfaces
rather than the fully coupled BEM–FEM solver to represent the
structural performance. Although Monte Carlo simulations can
produce estimates that converge to the true pf value and are more
widely applicable, FORM is still preferred here because of its lower
computational cost and its additional diagnostic tools such as the a
vector defined in Eq. (18).

Fig. 14 shows the results of the FORM methodology as com-
pared to a 1,000,000 simulation Monte Carlo analysis based on
the response surface technology described above. Note the near-
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perfect agreement between the two methods, suggesting that
FORM is valid for this example, where h is assumed to follow a nor-
mal distribution and J is assumed to follow a Gumbel distribution.

9.3. Results

The results of the objective function and limit states are shown
in Fig. 15. Again, h is assumed to follow a normal distribution while
J is assumed to follow a Gumbel distribution. According to the top
figure, the optimal fiber orientation angle in terms of the objective
function is about 59�; however, the objective function showed lit-
tle variation in the failure probability across the entire range of h.
The limit states play a very important role beyond the objective
function. The constraint functions each have definitive boundaries
for acceptable performance. The serviceability constraint is that
the power requirement of the self-twisting propeller is, on average,
lower than that of the rigid propeller, which can only be satisfied if
29� 6 h 6 83�. Second, the safety constraint limits the fiber orien-
tation angle to h < 31�. Hence, what seemed initially to be a wide
range of viable options for the design variable based on the objec-
tive function is limited to a small range of 29� 6 h 6 31�. This
places the optimal design based on FORM methodology to be very
close to the optimal deterministic design. In this case, the probabil-
ity of failure of the objective function ranges between 6.6% and
6.9%, which represents approximately 93% confidence that the
self-twisting propeller will exhibit safe and improved performance
over the rigid propeller for a realistic range of operating conditions.

10. Conclusions

The objective of this research is to develop a reliability-based
design and optimization methodology to improve the energy effi-
ciency of self-adapting composite marine rotors while minimizing
the power requirement and susceptibility to blade failure with
consideration for material and loading uncertainties. It was shown
that the uncertainties in material stiffness parameters, considered
as random variables, have a marginal effect on the hydroelastic
behavior of the self-twisting propeller. This due to the optimiza-
tion of the bending–twisting coupling that produces a system
which is more sensitive to variations in h and J than to expected

random variations in the material stiffness parameters. The distri-
bution of the random variable J was examined with normal, log-
normal, and Gumbel distributions. The Gumbel distribution was
considered to be more appropriate physically, and thus was used
as the advance coefficient distribution.

First-order reliability methods (FORM) were shown to be an
adequate design tool instead of the more time consuming Monte
Carlo simulations for probabilistic propeller optimization. Through
FORM analysis, it was shown that the optimal fiber orientation an-
gle for the adaptive propeller is 29� 6 h 6 31�, which will yield a
93% probability of acceptable performance based on three criteria:
a serviceability limit state based on propeller power requirement, a
safety limit state based on blade tip deflection, and an objective
function that ensures the maximum overall energy efficiency.
The serviceability limit state and constraint functions are designed
such that, on average, the power requirement of the adaptive pro-
peller is less than its rigid counterpart. The safety limit state and
constraint functions are designed to limit the blade tip deflection
to a specified value to prevent excessive deflections, stresses, and
to reduce the susceptibility to hydroelastic instability failures. Fi-
nally, the objective function was used to determine the optimal fi-
ber orientation angle that will maximize the average energy
efficiency of the self-twisting propeller for all forward operating
conditions. With the knowledge of the optimized equivalent single
layer fiber orientation, a series of possible layup sequences can be
developed that will provide an equivalent optimal load–deforma-
tion behavior of the blade.

The results show that a probabilistic approach is more appropri-
ate than a deterministic approach for the design and optimization
of adaptive composite structures that rely on fluid–structure inter-
action. This is because such structures are inherently more sensi-
tive to random variations in material properties, geometric
configurations, and loading conditions. It is important to note that,
while the self-twisting propeller can be optimized for efficiency, it
is possible that the limit state functions would provide no viable
design option that would be both serviceable and safe. Should a de-
sign singularity occur, changes in the blade geometry, material
properties, and material configurations may be necessary. Addi-
tional work is needed to assess the effect of material, geometry,
and load uncertainties on the initiation and evolution of failure
modes. This is more complex due to the need to consider the many
layers of laminates and the many possible modes of failure, as well
as uncertainties in the failure modeling of CFRP. It should be
emphasized here that although the methodologies presented here-
in focus on adaptive composite marine propellers, the framework
is also generally applicable to other flexible structures that under-
go fluid–structure interactions, including wind or tidal turbines.
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