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ABSTRACT 
  

 Recent disasters have shown that income plays a central role in determining the capacity of impacted households to 
cope with the shock and recover from it. Researchers often rely on random sampling to generate synthetic household 
income from aggregated Census data. This conventional approach imposes limitations towards proposing realistic 
policies. A method is introduced to deduce minimum household income for single-family homeowners using publicly 
available data via the tax assessor and current population survey. Post-earthquake housing recovery simulations are 
used to evaluate the advantages of the proposed income estimation method relative to the germane random sampling 
approach. Preliminary results with the proposed method show a reduction in the number of low-income households 
assigned to high-valued dwellings. Results also suggest that the random sampling approach leads to inflated recovery 
delays and overestimates the vulnerability of select low-income households. 

 
Introduction 

 
Household income has been a centerpiece in the studies of disaster impact and recovery [1-4]. Not only is 
income an important proxy for estimating economic well-being, but it is also the primary factor in assessing 
eligibility for post-disaster funding [5,6]. Public data on household income (e.g., from the U.S. Census) is 
usually available in aggregated form that does not provide information about individual households. 
Approximate approaches, such as randomly sampling incomes, are often used to disaggregate this data and 
assign income to individual households. A random sampling approach may assign low-income households to 
high-value buildings. If a simulation estimates that these buildings sustain even light damage, the assigned 
low-income homeowners may not have the means to afford repairing it. Therefore, it is possible for such 
models to overestimate the impacts that disasters could have on low-income homeowners. 
 
  In this paper, we introduce a method that considers the correlation between household income and building 
value via mortgage eligibility at time of purchase. We use San Francisco as an example to illustrate the 
advantages of assigning household income with the proposed method. Transaction dates and values are 
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extracted for buildings in San Francisco from the City’s tax assessor database [7]. The proposed method 
accounts for correlations between household income and building value to assign income for the households 
that own the 95,387 single-family detached residences registered in the tax assessor database. We then 
demonstrate the implications of accounting for such correlations in a post-earthquake housing recovery 
simulation for the City. 

 
Estimating Household Income 

 
The proposed method uses the transaction date and price of a property to estimate the minimum income 
required to afford the monthly payments of a primary mortgage associated with the property. Monthly 
mortgage payments are calculated as: 
 

𝑀𝑀 =  𝑃𝑃 ⋅ [  𝑖𝑖(1 +  𝑖𝑖)𝑛𝑛 ] / [ (1 +  𝑖𝑖)𝑛𝑛 –  1] (1) 
 

where 𝑀𝑀 is the monthly payment amount, 𝑃𝑃 is the principal loan amount, 𝑖𝑖 is the monthly interest rate, and 𝑛𝑛 
is the number of months to repay the loan. Assuming a down payment of 20%, the principal loan amount is 
80% of the transaction value. An amortization period of 30 years is allotted to each mortgagor. The interest 
rate is extracted from historical mortgage records [8] to reflect the lending conditions at the time of transaction. 
We assume a gross debt-service ratio of 28% commonly used in the lending industry, such that the total annual 
payments calculated via Eq. 1. do not exceed 28% of the household annual income. The validity of this 
assumption will be investigated in future iterations of the model. 

 
 Once household income at the time of purchase is established, the Integrated Public Use Microdata Series 
(IPUMS) is used to deduce the current income of households. The IPUMS is the largest collection of individual 
and household level Census data in the world [9]. Weighted household income metrics provide information to 
create annual snapshots of household income percentile rankings in the Bay Area between 1967 and 2019. 
These metrics are available from the Annual Social and Economic Component of the Current Population 
Survey in IPUMS. We assume that households maintain their income percentile ranking over time and project 
their income in 2021 from their historical ranking.  
 
 

Preliminary Results 
 

High-Resolution Spatial Distribution of Household Income 
 

The spatial distribution of modeled annual household income is plotted in Fig. 1.a. The mean and median 
household income of homeowners for the study region are approximately 10% higher than the corresponding 
values from the Current Population Survey. This observation is within reasonable expectations as the study 
region is limited to San Francisco while the Current Population Survey extends into the entire metropolitan 
area including Oakland and Fremont - which demonstrates lower household income [9].  
 
      To enable comparison, a second set of household incomes is randomly sampled using income distributions 
from the SimplyAnalytics portal [10]. Replacement costs for each building is estimated by applying RSMeans 
building construction costs [11] to respective building areas. The ratios of building replacement cost to annual 
homeowner income is plotted in Fig. 1.b. It is evident from the histogram that the random sampling approach 
assigned over 5,000 owners to buildings with replacement costs exceeding 20 times their annual income while 
our proposed method produced a more reasonable distribution. 
 



   
 

Figure 1.    (a) Spatial distribution of simulated single family residence homeowner annual income in San 
Francisco; (b) Histograms comparing building replacement cost to household income generated from random 
sampling and our proposed method. 
 
 
Post-Disaster Recovery      
 
We use the estimated incomes from the proposed method in housing recovery simulations following a 
hypothetical M7.2 earthquake along the San Andreas fault. This earthquake scenario is used for planning 
purposes by the City [12]. One hundred realizations of ground shaking intensity, corresponding structural 
damage, and subsequent repair costs are simulated using SimCenter’s Regional Resilience Determination 
(R2D) tool [13]. The outputs from the R2D Tool are used as inputs through the Regional Risk and Recovery 
(R3) tool [14] to simulate the post-earthquake reconstruction of the housing stock in the City. 
 
 The estimated repair costs allow us to determine the loss-to-income ratio for each household. In each of 
the 100 simulations, we calculate the mean loss-to-income ratio for low-, moderate-, and high-income 
households considering incomes assigned through (1) our proposed method and (2) conventional random 
sampling. Low-income and high-income household thresholds are established at 80% and 200% of the San 
Francisco area-median-income (AMI) respectively. These thresholds were determined after conversations with 
local planners who indicated that the typical threshold of 120% AMI for high-income is not adequate for San 
Francisco [6]. Fig. 2.a. compares the loss-to-income ratios using each methodology, with each set of brown-
teal-blue dots representing one recovery simulation for the 100 simulations. The 45-degree line indicates where 
the results would lie if the two income-assignment methods yielded identical results. Results below this line 
indicate higher loss-to-income ratios when using random income assignment, and that is observed in the low- 
and moderate-income groups. Conversely, the loss-to-income ratios for the high-income households are above 
the line, indicating that these are higher when the proposed method is used. The household incomes estimated 
with the proposed method are correlated to the value of the buildings occupied by these households. Thus, all 
else equal, high-income households are bound to experience higher losses.  
      
      Household income also affects the time to secure funding for repairs. High-income households are more 
likely to rely on bank loans with quick funding disbursement, whereas low-income households may rely on 
publicly-backed loans and grants which may take months to years to become available. Once funding is 
secured, some households may still be forced to wait for an available contractor crew to repair their homes due 
to limited reconstruction workforce. The later a household enters the competition for the workforce the longer 



it must wait. Because the wait for financing and the wait to hire a contractor postpone the start of the recovery 
process, we refer to this period as ‘recovery delay’. 
 
      We estimate the recovery delay in each simulation in a similar fashion to the loss-to-income ratio in 100 
recovery scenarios. Fig. 2.b. shows that the recovery delay is largely overestimated for low-income households 
whereas it is significantly underestimated for high-income households when incomes are randomly sampled. 
The randomly sampled income produced high loss-to-income ratios for low-income households. Although the 
lower-income households may qualify for small private loans which are quick to be disbursed, the high loss-
to-income ratios force them to rely on governmental aid for larger sums, which is slower to be disbursed. These 
results suggest that even though random income assignment has a relatively small impact on loss-to-income 
ratios, its influence on housing recovery is significant. 
 

 
 
Figure 2.    Marginal plots comparing the random sampling model and proposed method in terms of, (a) ratio 
of median loss to annual HH income and (b) median recovery delay for households, divided into three 
income categories.
 

Conclusion 
 
A novel method of assigning income to homeowners and its impact on post-disaster recovery modeling is 
explored in this study. Through the simulation of 100 post-earthquake recovery scenarios, we identified that 
the conventional random sampling process introduces biases that increase recovery delays and overestimate 
the vulnerability of low-income homeowners. The proposed method provides higher fidelity information when 
generating household income for regional disaster recovery simulations. Moving forward, our ongoing work 
further explores the validity of assumptions presented in this study, such as the income mobility and debt 
servicing for households. 
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